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Abstract. Over the last decade, online reputation has become a central
aspect of our digital lives. Most online services and communities assign
a reputation score to users, based on feedback from other users about
various criteria such as how reliable, helpful, or knowledgeable a person
is. While many online services compute reputation based on the same set
of such criteria, users currently do not have the ability to use their repu-
tation scores across services. As a result, users face trouble establishing
themselves on new services or trusting each other on services that do not
support reputation tracking. Existing systems that aggregate reputation
scores, unfortunately, provide no guarantee in terms of user privacy, and
their use makes user accounts linkable. Such a lack of privacy may result
in embarrassment, or worse, place users in danger.
In this paper, we present Street Rep, a practical system for aggregating
user reputation scores in a privacy-preserving manner. Street Rep makes
it possible for users to provide their aggregated scores over multiple ser-
vices without revealing their respective identities on each service. We
discuss our novel approach for tamper-proof privacy preserving score ag-
gregation from multiple sources by combining existing techniques such
as blind signatures, homomorphic signatures and private information re-
trieval. We discuss its practicality and resiliency against different types
of attacks. We also built a prototype implementation of Street Rep. Our
evaluation demonstrates that Street Rep (a) performs efficiently and (b)
practically scales to a large user base.

1 Introduction

However, designing such a unified reputation system for aggregating users’ rep-
utation scores arises serious privacy implications. Even though users might wish
to share reputation across different platforms, they may not want their different
accounts (even different accounts on the same services, as in the case of Reddit
“throwaway” accounts) to be linkable. For example, someone could have two
Reddit accounts, one for general participation and another for participating in a
forum of e.g., abuse survivors, and not want her two worlds to collide. Likewise,
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someone trying to find something on Craigslist might not want strangers on the
Internet to be able to link their Craigslist post to their Airbnb account and re-
cover their address. In fact, considering the sensitivity of the links between these
accounts, it is reasonable for users of the system to require it to preserve the un-
linkability of their accounts even from the entity running the system itself. Thus,
any sort of centralized reputation system must be strongly privacy-preserving.
Additionally, a reputation system must be resistant to tampering with or cherry-
picking of the scores. In the context of the privacy preserving requirement, these
characteristics are non-trivial to achieve.

We propose Street Rep, a novel design for a privacy-preserving centralized
reputation system that facilitates the linking of reputation between different ac-
counts (whether on the same or different platform) while preserving the unlink-
ability of the accounts themselves and being resistant to reputation tampering
and cherry-picking. Street Rep allows its users to compute their own aggregated
scores, for all or a subset of their identities, in a tamper-proof manner, with-
out revealing the underlying identities themselves. By identities, we refer to the
set of individual accounts that a user might have on different online services,
which the user would like to include in the computation of their aggregated
score. The resulting aggregated score is analogous to a credit score in the sense
that it provides an “arbitrary” measure of trust. In the United States, a credit
score is a number generated by a mathematical algorithm using information in
a person’s credit report, obtained from many different sources. Similarly, the
aggregated reputation score in Street Rep is computed using a person’s reputa-
tion ratings based on her online activities. The key difference is that, in Street
Rep, the central server that collects the individual reputation scores for a user’s
accounts does not learn any information about the real identity of users, or
which accounts belong to the same user. This further holds for any querier (i.e.,
other users querying a given user for her score). Users of Street Rep aggregate
their reputation ratings themselves by following a cryptographic protocol. While
this self-computation is a key aspect to the anonymity and integrity properties
ensured by Street Rep, delegating the reputation aggregation to users involves
several challenges, as users may attempt to forge a higher score than their own
by using malicious techniques in order to tamper with the computation. For
example, they may attempt to omit their bad ratings, or use expired ratings
with higher scores. Street Rep addresses the problem of tamper-proof privacy
preserving score aggregation by combining existing techniques such as blind sig-
natures, homomorphic signatures and Private Information Retrieval (PIR) in a
novel way.

Our contributions are the following. (i) We designed a protocol allowing
for the computation of an aggregated score, corresponding to multiple services,
without disclosing individual scores or identities. (ii) We built a novel reputation
aggregation system preventing any party from linking individual users’ identities
used in the computation, based on the aforementioned protocol. (iii) We imple-
mented Street Rep as a prototype, and demonstrated that it performs efficiently
and practically scales to a large user base.



Street Rep: A Privacy-Preserving Reputation Aggregation System 3

To the best of our knowledge, we are not aware of any privacy-preserving rep-
utation aggregation system that combines anonymity, account unlinkability, in-
tegrity and unforgeability of reputation scores, score freshness (preventing users
from using old reputation scores) in a practical and scalable protocol as con-
structed in this paper.

2 System overview

In this section, we will provide an overview of Street Rep, before delving deeper
throughout the rest of the paper.

Example use case As a motivating example, consider the following use case.
An individual, Alex, has accounts on several different online services. She might
have a Slashdot account for technical discussions, an eBay account used for shop-
ping, and a Reddit account with which she participates in sensitive discussions
(for example, on the /r/survivorsofabuse sub-reddit ; a community focused on
helping abuse survivors). All of these activities generate reputation: Alex might
get moderated on Slashdot, voted on Reddit, and reviewed on eBay. Due to the
sensitivity of the involvement on Reddit, however, Alex may wish to keep her
Reddit account unaffiliated with her other accounts.

The reputation information accumulated by Alex on these services represents,
in some sense, the reputation of “Alex the Person”, rather than just various
accounts that she controls. However, due to the desire for anonymity, she cannot
utilize a traditional centralized reputation system to “unify” this reputation, as
she would have to publicly link the Slashdot, eBay, and Reddit accounts, losing
anonymity on the latter site. Using Street Rep, Alex can pool the reputation of
these accounts while maintaining the Reddit account’s anonymity, allowing for
reputation ratings built up on those accounts to form the reputation of “Alex
the Person”.

Street Rep would be used in several steps involving Alex, the service providers
(Reddit, Slashdot, and eBay), the central server (that manages the reputations
in a privacy-preserving way), and the querier who will eventually query Alex’s
combined rating.

High-level description From a high-level perspective, Street Rep involves the
following steps and operations. Alex first commits to provide scores from a given
set of services to Street Rep. She initially chooses which services to incorporate,
as part of a public commitment set. Each value in this set represents a differ-
ent account that she owns. She then blinds these values using a cryptographic
operation based on Chaum’s blind signatures [5], which produces so-called blind
commitment values that do not reveal any information about the original values
(accounts) from the commitment set. After this, Alex registers the blind commit-
ment values with each service provider (one blind commitment value per service
provider). The service providers (SPs) update the central server (CS) with the
reputation values associated with these blind commitments. The CS essentially
acts as a database of entries of the form ε :< i, r > where i is an identity, and
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r is a rating6. The central server generates signatures on combination of each of
her scores with its corresponding blind commitment value. Next, Alex privately
queries CS for the signatures on her scores without revealing her identities us-
ing private information retrieval mechanisms. Then she privately computes her
aggregated score herself 7, and provides the result to the querier. This step is
both tamper proof and privacy perserving, and relies on a novel insight involving
blind signature transformations with respect to the (multiplicative) homomor-
phic properties of RSA. This aspect is described in detail in § 3.3. After this
process, the querier will have obtained an aggregated reputation score for Alex,
including her reputation from Reddit, eBay, and Slashdot. Neither the querier,
the service providers, nor the central reputation server will be able to link Alex’s
Reddit account to the other two accounts. Moreover, the querier is able to ver-
ify integrity of an aggregated reputation score, making sure that Alex has not
modified or cherry picked her reputation ratings.

Threat model We assume that SPs and the CS are honest-but-curious, i.e.,
they follow the protocol honestly and run the protocol exactly as specified (no
deviations, malicious or otherwise), but may try to learn as much as possible
about the users and their accounts. This is a standard assumption in the litera-
ture, and in our particular case, the underlying intuition is that SPs and the CS
have no particular interest in tampering with user scores. However, we assume
that users may be malicious, and therefore are not trusted with the integrity of
their aggregated reputation scores.

In summary, we assume that: SPs and the CS do not provide incorrect rep-
utation ratings for individual accounts; SPs, queriers, and the CS may collude
with each other as an attempt to de-anonymize users, or link their identities
together; Users may try to forge arbitrary ratings, share individual ratings with
other users, or omit their bad scores and cherry-pick their best scores, as an at-
tempt to increase their own aggregated score. Users do not try to increase their
reputation ratings by colluding with the CS, or with the SPs; The mapping be-
tween an individual account and its associated reputation score, or rating, is
public8.

Security and privacy requirements Here, we list the security and privacy
requirements of a privacy-preserving reputation aggregation system.

– Anonymity: the underlying identity, or real identify of accounts is not re-
vealed to the SPs nor to the CS. They only know the apparent identity
associated with each account (e.g., nicknames). Clearly, Street Rep does not
provide anonymity for users whose identifiable information is explicitly or
implicitly attached to their accounts.

– Account unlinkability: accounts of the same user cannot be linked to-
gether: none of the involved parties learns which accounts’ reputation ratings

6 In the remainder of this paper, we interchangeably use the terms rating and reputa-
tion score

7 This process is automated, and is performed on the client-side.
8 Users are responsible for using nicknames or non-identifying pseudonyms on their

public profiles, e.g., on Reddit.
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Table 1: Reputation Aggregation Schemes.

Scheme System and Threat model Anonymity
Account Integrity & Score

Unlinkability Unforgeability freshness

Street Rep
SPs push reputation ratings to CS,

users obtain aggregated reputation score from CS ;
Assumes that SPs and the CS are honest-but-curious.

yes yes yes yes

SOR [4]
Only supports monotonic aggregation/measures of reputation;

Requires a trusted registration authority
yes no no no

DECO [19]
Users access websites via TLS to prove provenance;

Secure against both malicious users and servers
yes yes no Not applicable

Prio [8]
Designs for a traditional secure aggregation;

requires multiple non-colluding servers, and at least one honest
yes (for clients) no Not applicable

are used in the computation of an aggregated score. Users solely know their
own set of accounts, and this information remains private during the whole
process.

– Integrity and unforgeability of reputation scores: users cannot report
manipulated (increased) individual ratings; the ratings remain identical to
what is published by SPs in their websites. They also cannot forge any
parameter in the computation of their own score, nor use another user’s
scores.

– Score freshness: the overall aggregated reputation score is fresh and the
user cannot use her old and higher reputation ratings in the computation.

Related work and its limitations In contrast with existing work in the lit-
erature, our approach meets all of these requirements. In order to do so, Street
Rep presents an efficient and practical scheme inspired by existing cryptographic
techniques from the literature. It builds on a novel combination of blind signa-
tures, homomorphic encryption, and private information retrieval. More specifi-
cally, our approach leverages the multiplicative homomorphic properties of RSA
along with Chaum’s blind signatures in order to build a system featuring the
aforementioned security and privacy requirements. To the best of our knowledge,
existing schemes proposed in the literature only address a subset of the security
and privacy requirements presented in our current approach:

– Existing approaches based on anonymous credentials or secure aggregation
do not provide all privacy and security requirements (e.g, unlikability, score
freshness) in a way that would be usable in the context of our work.

– Current schemes based on zero knowledge proofs involve a considerably
higher performance impact than the scheme we propose.

We choose the most relevant work and compare it with Street Rep in Table 1.

Bethencourt et al. [4] proposed Signatures of Reputation (SOR) as a new
cryptographic framework that makes it possible to have a messaging system
where anonymous users post unlinkable messages while the votes on their posts
get aggregated. These aggregated votes are shown along with the posts as the
reputations of their authors. In Street Rep, however, the reputation ratings are
generated by users of several different websites and then they are aggregated.
The SOR only supports monotonic aggregation of reputation where additional
feedback cannot decrease a user’s reputation. However, in Street Rep, there is no
constraint on reputation scores and they may decrease or increase. In addition,
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Initialization and updates

(1) CS: key generation

(2) User registration SP

(3) CS data push SP

(4) CS: signing and storing

Queries

(5) User request PIR CS

(6) User PIR response CS

(7) User: aggregate

(8) User score query Qr

(9) User score Qr

(10) Qr: verification

Fig. 1: Steps in Street Rep

in Street Rep, we provide mechanisms for preventing users from omitting or
replacing their bad scores to forge a good reputation.

It might be possible to apply some techniques used in anonymous credential
system to provide account unlinkability. For example, Zhang et al. [19] recently
introduce DECO, a decentralized oracle for liberating web data. DECO system
consists of 3 parties: prover, verifier, and server. The goal is to allow the (ma-
licious) prover to prove the verifier that a piece of data came from a particular
website (the server) and prove statements about such data while keeping the
data itself secret. Indeed, DECO can be used to support reputation aggregation.
Concretely, one can consider DECO’s prover as a user in Street Rep, DECO’s
servers as our service providers (SP), and DECO’s verifier as our centralized
server (CS). The Street Rep’s user now needs to prove CS that he has a repu-
tation score from the respective ith service provider. They can simply do it by
invoking DECO. However, their system does not provide all privacy and security
requirements for a reputation aggregation system. For example, a user can still
cherry-pick some scores and provide the credentials only for higher reputation
scores.

Using secret-shared non-interactive proofs, Prio [8] is able to prevent mali-
cious users who can follow any arbitrary polynomial-time strategy to deviate
from the scheme. One can use secure aggregation to aggregate reputation scores
of an individual from different service providers. However, this solution is clearly
vulnerable to user’s privacy (e.g. anonymity) since the centralized server has to
know the real/underlying identify of account to determine the reputation scores
from the same user.

3 System design

The core component of Street Rep is a protocol allowing users to compute and
share aggregated scores in a privacy-preserving manner.

Online service providers, or SPs, provide a service involving a reputation
score, such as discussion forums, or e-commerce services. We define the set of
all SPs as Sp = {sp1, sp2, ..., spk}. Users of Street Rep are identities who gain
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reputation by participating in online activities. U is the set of all users involved
in the system, where: U = {u1, u2, ..., un}. Identities. Each user has a variable
number of identities (or accounts) spread across multiple SPs. The set of all the
identities appearing in these services is defined as I = {i1, i2, ..., im}. There can
be a one-to-many mapping between a user and her set of identities. The central
server, or CS, regularly obtains the reputation ratings for all identities on all
services. It then signs and stores these ratings. Later, upon requests, it provides
these signatures to users through private information retrieval. Queriers are
third-party clients (such as a seller, buyer, renter, driver or a recruiter) who
directly contact and request Street Rep’ users for their updated overall reputation
score.

As shown in Figure 1, players interact with each other using a protocol con-
sisting of ten steps: (1) initialization, (2) registration, (3) pushing data to the
central server, (4) signing and storing, (5, 6) privately retrieving data from the
central server, (7) signature aggregation, (8) querying for a user’s reputation
score, (9) sending the reputation and its signature to the querier, and (10) veri-
fication by the querier. The remainder of this section describes each step in more
detail.

3.1 Initialization

The first phase of Street Rep consists of its initialization, that is, setting up
cryptographic keys, and registering user accounts. This corresponds to steps (1)
and (2) as described above.

Key generation At initialization time, the CS follows the RSA key generation
phase and generates two pairs of keys, (pk1, sk1) and (pk2, sk2), each consisting
of a public key and a secret key respectively.

It chooses two pairs of large prime numbers (p, q) and (p′, q′), and computes
n = p · q, n′ = p′ · q′, φ(n) = (p − 1)(q − 1) and φ(n′) = (p′ − 1)(q′ − 1),
where φ(n) is Euler’s totient function, and n 6= n′ and φ(n) 6= φ(n′). It then
chooses two encryption keys e and e′ and calculates d and d′ such that e · d ≡ 1
(mod φ(n)) and e′ · d′ ≡ 1 (mod φ(n′)). The CS finally publishes pk1 = (e, n)
and pk2 = (e′, n′) as its public keys and keeps sk1 = (d, p, q) and sk2 = (d′, p′, q′)
secretly.

In the remainder of this paper, we denote by: enc(e,m) = me (mod n), the
encryption of message m using the public key e, and its decryption using the
private key d, such that: dec(d, enc(e,m)) = m. Similarly, we denote by sig(d,m)
and sigverif(e,m) the signature of message m using the private key d, and its
verification using the public key e, respectively.

Registration Figure 2 illustrates the steps for a user u with m accounts to
follow and register in the Street Rep system. They include User commitment,
Hiding, and Registration request. We denote user SPs as a set of service providers
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User u

1 : foreach (i, spi) in (user accounts, user SPs) do

2 : ci = request commitment value()

3 : ri = random()

4 : bi = blind(ci, ri)

5 : register(spi, < i, bi >)

6 : done

7 : prou = {(ci, spci)}
8 : publish profile(prou)

Fig. 2: Algorithm for user registration

on which u has some accounts and user accounts as a set of accounts for the
user.

User commitment. Each user of the system initially commits to always
using the same defined set of accounts when computing her aggregated score.
This allows for aggregated scores to be consistent over time, and it also prevents
users from cherry-picking high scores while leaving low scores out of the compu-
tation. In order to commit to a given set of accounts, users associate a unique
identifier to each of their underlying identities. This unique identifier, which
we term commitment value is, in itself, public. However, the mapping between
identities and commitment values remains private, and only known by the user.

In order to ensure that each commitment value is unique, users obtain each
value by querying the CS, which maintains a database of allocated commitment
values (this query is represented as request commitment value() in the algo-
rithm shown in Figure 2). As a result, each user u, with m accounts, commits
to a commitment set Cu as follows:

Cu = {c1, · · · , cm}

The user creates a public profile, prou, and stores it in the CS. This profile
is a list of pairs, where each pair is composed of an identifier (corresponding to
a service provider), and a commitment value.

prou = {(c1, sp1), · · · , (cm, spm)}

Therefore, anyone including the queriers is able to know which services host
the accounts of a given user9. This information can be used by queriers to ask
for the aggregation of scores from a subset of the user’s accounts. For example,
a querier may only request the aggregation of scores in the category of finance
and marketing. More information regarding specific queries is provided in § 3.5.

9 However, the specific accounts at play remain private, and it is therefore im-
possible for an attacker to know that e.g., a given user participated in the
/r/survivorsofabuse sub-reddit.
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Hiding. Along with each commitment value ci, users compute a blind token
bi as follows:

bi = ci · rie (mod n)

where ri is a large random value that is kept secret by the user, and (e, n) is the
public key of the CS, as part of the pk1 pair. Along with ri, users also compute
ri
−1 such that:

ri · ri−1 ≡ 1 (mod n)

In Figure 2, we call this function blind(ci, ri): I → B, that returns the
blind commitment value associated with a user account. Blind tokens essentially
embed a commitment value, without revealing it, and are signed later by the
CS to produce a blind signature. These allow users to interact with other parties
without revealing the link between their underlying identities, while being able
to prove that they comply with their commitment (this aspect is described in
further detail in § 3.3). We denote by B the set of all blind commitment values
associated with all identities.

Registration request. Users register accounts of their choice for use in
Street Rep by sending a registration request to their respective SPs, spi, as
follows:

regi =< i, bi >

Each SP is responsible for authenticating its own users over secure channels.
Once a service provider knows the blind token associated with an identity, it
considers this account as being registered for use in Street Rep, and it proceeds
to push its associated scores into the CS at each round.

3.2 Updates

While the system is running, user accounts are constantly changing due to online
user activity, affecting the user scores on the SPs’ side. In order to keep up to date
with the latest scores, Street Rep requires SPs to update scores on a regular basis.
This is achieved through the concept of rounds, where SPs push data related to
each of their registered user accounts, and the CS signs and stores it.

During this process, SPs are considered trustworthy with respect to the in-
tegrity of the data, i.e., SPs have no interest in tampering with users’ scores.

Pushing data SPs interact with the CS by pushing fresh scores on a regular
basis. Different service providers may use different scales for ratings (e.g., one
to five stars, or a percentage). In Street Rep, the scores are all normalized to the
same scale before being pushed. Each SP is responsible for implementing its own
normalize() function, which normalizes scores of its own scale to Street Rep’s
scale in which scores are represented in the discrete integer scale [1, µ].

During this normalization process, SPs add some noise to the ratings, e.g.,
scores are rounded to the closest integer value, where the loss of accuracy is
justified by a gain in privacy. Moreover, SPs can apply other sophisticated
differential privacy techniques [10]. We consider these improvements for future
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work. In § 4.3, we argue that when µ is small (e.g., 5), it is impractical to
uniquely identify users based solely on their individual reputation ratings and
their aggregated scores.

At each round k, a new time stamp tk is generated, and a storage request is
sent to the CS. A storage request is performed by sending to the CS a vector
stok =< i, tk, νi, bi >, where νi is the normalized score associated with the
identity i and bi is a blind user commitment. The corresponding algorithm is
described in Figure 3, in which we introduce the function score: I → S that
returns the score value associated with a user identity.

SP

At time tk

foreach i in user accounts, do

νi = normalize(score(i))

m = (i, tk, νi, bi)

send(CS,m)

done

Fig. 3: Algorithm for storage requests.

The communication between SPs and CS, and between SPs and users oper-
ates on a secure channel, and SPs are trusted to provide correct scores.

Signing and storing As it is shown in Figure 4, the central server stores infor-
mation on service providers’ storage requests. After receiving a storage request,
the CS creates a new entry in its database, of the form < i, σ, σ′ >, along with
a time stamp t, such that:

σ = sig(d, νi · bi · t) = (νi · t · ci · rie)d (mod n)

and:
σ′ = sig(d′, νi) = νi

d′ (mod n′)

where i is the index of the entry. Each entry contains the signatures corre-
sponding to an account. The values d and d′ are the private keys of sk1 and sk2
(the two key pairs initially generated by CS in §3.1), and the values n and n′

are part of the public keys, pk1 and pk2 respectively.
It should be emphasized that, since RSA is homomorphic with respect to

multiplication, σ can also be expressed as

σ = sig(d, νi) · sig(d, bi) · sig(d, t) (mod n)

and, thus, by signing bi, the CS generates a blind signature over the blind
message bi.
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CS

foreach (i, tk, νi, bi)in receive(stok) do

σi = sig((d, νi · t · bi))
σ′
i = sig(d′, νi)

store[i] = (σi, σ
′
i)

done

Fig. 4: Algorithm for signing and storing.

Both σ and σ′ are then used in the aggregation and verification steps, as
described in the next sections. As a result, σ is the signature of the product of
a reputation score, its associated blind commitment value, and a time stamp. It
is used by users when aggregating scores.

While σ′ is the signature of the reputation score alone, the use of signatures,
σ and σ′, has a tamper-proof role, as described in § 4, they both together ensure
the integrity of overall aggregated reputation score that will be reported by the
user.

3.3 Queries

At each round k, users retrieve their latest individual reputation ratings (and
their signatures) from the CS, and aggregate them together. This operation
guarantees that users respect their initial commitments (otherwise, the resulting
signatures are invalid, as discussed in §4. The results include aggregated reputa-
tion ratings and their signatures, which later can be provided to queriers upon
a request.

Privately retrieving data First, introduced by Chor et al. [6], Private Infor-
mation Retrieval (PIR) is a protocol that allows a user to query a database for
an item without revealing which item is being retrieved.

The CS database leverages PIR primitives, each including r blocks of b bits
in size. Users of Street Rep know the exact database indexes of the blocks where
their accounts are located.

In Street Rep, we use a lattice-based CPIR scheme called XPIR [1], in which
one PIR server is employed, in contrast to IT-PIR schemes where the data is
split among multiple servers. It has been shown that XPIR can process a wide
range of databases in a few seconds, even for 100Gb databases [1].

In Street Rep, users do privately retrieve the signatures related to each of
their reputation ratings. Since each request is based on PIR, the CS is unable to
gather information about the content being retrieved, and is thus unable to infer
any link between individual user accounts during this process. For each of their
accounts, users retrieve signatures σ and σ′ from the CS, as shown in Figure 5.
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User

foreach i in{i1, . . . , im} do
request pir(i)

(σi, σ
′
i) = pir response()

done

Fig. 5: Private information retrieval in Street Rep

Most PIR schemes, including XPIR, do not ensure database confidentiality.
In Street Rep, malicious users may attempt to leverage this to obtain information
belonging to other user accounts, without the CS being aware of it. To this end, a
dishonest user may try to usurp the signatures of other users’ reputation ratings.
However, we show in § A.2 that this attack vector is not applicable.

User aggregation After the CS has signed the scores for individual identities,
the user aggregates these signatures, and generates an aggregated signature for
her aggregated score. This aggregated signature ensures that the score is not
forged by the user, and that she has not cherry-picked a subset of her accounts
(i.e., those exposing the best scores) to compute the overall score.

To aggregate her signatures, a user first unblinds them. Recall from § 3.1
that values for ri and r−1i are kept secret by the user. The signatures retrieved
by the user from the CS are of the form:

σi = (νi · t · ci · rei )d (mod n)

As ri
ed = ri (mod n), this is equivalent to:

σi = (νi · t · ci)d · ri (mod n)

From there, since ri ·ri−1 ≡ 1 (mod n), and since ri and ri
−1 are kept secret,

the user is the only player that has the ability to perform the following operation:

σi · ri−1 = (νi · t · ci)d (mod n)

This operation allows users to unblind the commitment values embedded into
each signature σi. In Figure 6, this function is called unblind. In order to ag-
gregate scores, users calculate the product of all of their m unblinded signatures
as follows:

p =

m∏
i=1

σi · ri−1 (mod n)

which is equivalent to:

p =

m∏
i=1

(νi · t · ci)d (mod n)
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Users also compute the product of their reputation scores signed with the
private key sk2 and represented by σ′, as follows:

p′ =

m∏
i=1

σ′i (mod n′)

User

foreach σi in pir responses() do

σ̂i = unblind(σi)

done

p =

m∏
i=1

σ̂i (mod n)

p′ =

m∏
i=1

σ′
i (mod n′)

Fig. 6: Algorithm for aggregating signatures.

At any time during round k, a querier may ask a user to provide an aggre-
gated score. This query can be sent by any medium, and can be automated, for
example, in person, by email or automatically through a trusted service or appli-
cation providing online presence (this point is outside of the scope of this current
work). At the time of query, the user may be offline or online. As a response,
when available, the user sends ν, p and p′ to the querier, where ν =

∏m
i=1 νi

Verification A querier interested in a user’s overall reputation score, sends a
request to her using the function request user(). At this point, the querier
received v, p and p′ from the user. By using the CS’s public key, the querier
verifies both signatures using the verify() function, which computes

pe (mod n) =

m∏
i=1

(νi · t · ci) =

m∏
i=1

νi ·
m∏
i=1

t ·
m∏
i=1

ci (mod n),

and:

p′e
′

(mod n′) =

m∏
i=1

νi (mod n′).

If both signatures are accepted by the verification function, the querier can
ensure that the score is the aggregation score of all the user’s accounts, and that
the user has not forged any signature. In § 4, we elaborate these properties in
more detail.
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Querier

request user()

(ν, p, p′) = receive user()

if verify(ν, p, p′, t, c1, · · · , cm) then

accept

else

reject

done

Fig. 7: Algorithm for verifying signatures.

Aggregated reputation score As mentioned previously, the commitment set
for a user u, Cu, is public in her profile. Therefore, the querier can trivially
compute m = |Cu|. Also, the user provides ν to the querier, thus, she can infer
the final reputation score by computing the geometric mean of the aggregated
score as follows:

f = ν(1/m)

This geometric mean indicates the central tendency of a user’s reputation scores
and shows a single “figure of merit” ; a good indicator of one’s reputation over
multiple services. A querier can use this final reputation score as a metric to
evaluate the trustfulness or worthiness of a person compared to others.

3.4 Commitment updates

Over time some users may register into new websites while leaving a few others.
Street Rep supports the functionality for users to add new accounts. They need
to register on these new websites and update their profiles. Then, they can use
their new reputation ratings to compute their aggregated reputation score.

However, Street Rep currently does not allow users to remove accounts from
their profiles. This intentional limitation prevents users to “cheat” by removing
accounts as they reach lower scores. As a results, users’ bad reputation ratings
are always used in calculating the overall reputation score.

3.5 Specific queries

In some scenarios, queriers may see more value in the aggregation of scores from
a specific subset of services on which the user has an account. For example, a
recruiter may be more interested in one’s reputation on websites that are more
related to job search. Recall that users publish their profiles, containing a list
of services on which they have accounts (along with their committed values).
This allows queriers to generate specific queries targeting a subset of accounts,
which we term cluster. Possible impacts of specific queries on user’s privacy are
discussed in Section 6.
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4 Security analysis

We present hereafter an analysis of the security properties of Street Rep, demon-
strate how these are practical under realistic assumptions, and demonstrate the
impracticality of subsequent vectors of attack.

4.1 Fundamental properties

By design, the RSA cryptosystem is prone to multiplicative homomorphism.
Street Rep relies on these homomorphic properties in order to perform arithmetic
operations over cryptographic signatures. If performed naively, such operations
are naturally subject to signature forgery. In fact, one could argue that, in the
general case, such a scheme is by definition insecure; RSA is only homomorphic
when used without padding, and as such:
1. Small input values (cleartext m) or encryption exponents (e) resulting in
me < n are by definition not subject to modulo reduction and can therefore
be easily decrypted by an attacker.

2. A consequence of small encryption exponents is that attacks (based on the
Chinese remainder theorem) exist when a number of recipients of a ciphertext
share the same exponent [13,7].

3. It is not semantically secure [11], that is, ciphertexts are subject to plain-
text chosen attacks. (This is however not specific to RSA, as any trapdoor
function is existentially subject to such attacks [12]).
For these reasons, general applications of RSA always rely on secure padding

schemes, such as OAEP defined in the PKCS#1 standard [14]. One of the effects
of using such padding schemes is that of rendering the resulting cryptosystem
non-homomorphic.

In contrast with general approaches, Street Rep leverages the homomorphic
properties of RSA in the context of a well-defined message space, where such
potential vectors of attack are mitigated by the following points:
– The input space in Street Rep is both large and of a fixed size: values of

an input cleartext m depend on well defined multiplicative expressions of
large integer numbers (that is, t, ν and b from § 3). Therefore, all opera-
tions involved as part of our protocol are subject to modulo reduction, and
weaknesses 1) and 2) stated above do not apply in this context.

– Each multiplicative expression in Street Rep includes a blind commitment
value, itself generated from a large input space of pseudorandom values. A
consequence of this is that the message space is sparse, which has the effect
of making plaintext chosen attacks impractical [12]. This mitigates weakness
2) stated above.

– One of the fundamental properties of RSA is that of claw-freeness. This
property renders adaptive plaintext chosen attacks impractical. We will come
back to this point in § A.2. This mitigates weakness 3) stated above.
In summary, per the fundamental properties of RSA and given the afore-

mentioned properties of size and sparsity of the message space intrinsic to our
scheme, the previous general classes of attacks are impractical in the context of
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Street Rep. The remainder of this section presents i) a more detailed discussion
of the attack surface implied by the homomorphic properties of RSA, and how
our restrictive assumptions render such attacks impractical within the scope of
our application; and ii) a detailed discussion of specific points of importance
with respect to the security of our protocol.

4.2 Anonymity

The CS does not infer the real identities of accounts because users retrieve their
information from the CS’s database through PIR. The SPs do not obtain ad-
ditional information about users of Street Rep. Since commitment values are
blinded by users, the SPs are not able to detect if an identity in a website be-
longs to a specific user. The only way for an adversary to be successful is to
unblind the commitment values, which is equivalent to the problem of invert-
ing RSA. Obviously, SPs might have already collected some data about their
users. However, real identities of their users can remain private if users have not
revealed them in their profiles/ accounts.

4.3 Account unlinkability

Account unlinkability is an important property, since the probability of de-
anonymizing users, that is, revealing their real identity, increases as an attacker
recovers the link between individual user accounts. The following section dis-
cusses how Street Rep provides unlinkability. More specifically, we discuss the
impracticality for an attacker to link multiple individual accounts together. We
assume that users are responsible for using secure and anonymous channels dur-
ing communications with the service providers (e.g., users may need to rely
on Tor to avoid cooperating service providers to link identities by matching
IP addresses or perform intersection attacks based on the churn rates of their
users [18]).

General level of unlinkability The probability to obtain a random set of k
identities corresponding to a given user u with k identities is pr = 1

Ck
m

, where

m = |I|. This probability corresponds to the most general applicable attack to
Street Rep, and is very low. Furthermore, increasing k reduces this probability
(as it increases Ckm).

We refer to L = 1−pr by level of unlinkability, which empirically corresponds
to the difficulty for an attacker to detect the mapping between a given user and
her identities. L corresponds to the maximum level of unlinkability that Street
Rep can provide for a user with k identities. Here, we show that our protocol
does not further degrade this level of unlinkability.

Linking identities The following demonstrates the difficulty for an attacker
to link users’ accounts, at each relevant step of the protocol.
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– Registration phase: during the registration phase, users communicate
their blind tokens to the service providers. First, it is not practical for an
attacker to recover the initial commitment values from the blinded values
generated by RSA without both knowing the private key of sp1 and the
modular multiplicative inverse of ri for identity i, introduced in § 3. Second,
a different random number r is used in generating every blind token, thus
blind tokens are random, independent of users and accounts.

– Signing phase: during this phase, the CS gathers a blind token of the form
bi = ci · rie (mod n) (where ci is a unique commitment value from the user’s
public profile, and ri is a secret random number known by the user only) and
signs it using its private key d. Since b was blinded using the CS’s public key
e, this signing operation is equivalent to a decryption operation, and the CS
is able to learn the value of ci · r (mod n) in the process. However, since r
is both secret and very large, the CS cannot infer anything about the value
of ci.

– Retrieving data: The use of PIR by users when retrieving signatures from
the CS ensures that no information is revealed about the retrieved content,
and thus no link can be made between accounts or signature entries during
this phase.

– Verification phase: By obtaining aggregated signatures of users, queriers
do not gather additional information about user identities, other than their
aggregated score.

Linking scores During the verification phase of Street Rep, the querier learns
the product of scores, or ν. On a system where users each have k identities, with
scores normalized within the scale [1, µ], the minimum and maximum values for
ν are 1 and µk, respectively. Some values between these two numbers occur with
a higher probability than others. For example, prime numbers larger than µ can
never occur, while values with lots of small prime factors occur more often. As a
result, for example, score products with large prime factors are more identifying
than those with lots of small prime factors.

Therefore, the success of this attack depends on the number k of accounts
per user, and on the size µ of the space used to represent scores. Empirically,
when using realistic values for k and µ, many users share the same aggregated
score. These users with the same product score create an “anonymity set.” This
anonymity set provides plausible deniability for its users and it is very difficult
for an adversary to be able to uniquely de-anonymize a user. For instance, as a
simple illustrative example, let us consider a system with 10,000 users using a
scale from 1 to µ = 5 in order to aggregate the scores of k = 5 accounts each. If
we first assume a uniform distribution of users ratings, then each unique score
product is shared by 384 unique users, and this scales in a linear fashion (i.e., on
a system with 1 million users, each unique product is shared by 38400 users, and
so on). In practice, this uniformity assumption is unlikely to hold, and related
work has shown that the overall distribution of user rating roughly falls into
a normal bell-shaped distribution [15], which (in comparison with a uniformly
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distributed dataset) affects the probability of very low and very high scores.
We argue, however, that this is problematic only if the scale of valid scores is
large enough that some score values do actually fall under a specific probability
threshold (e.g. 1 out of 1000 users). In other terms, the fact that the querier
learns the product ν in this case does not reveal the public identity of the user
being queried, except when large values of ν are used, or when the number of
users in the system is low.

Finally, note that score freshness cannot be manipulated: a dishonest user
may try to use an old reputation score and its signature to increase her overall
reputation score. However, the signatures created by the CS include a timestamp
and by using an old signature, the overall signature will be rejected by the verifier
(querier).

5 Evaluation

We performed the following experiments in order to evaluate the performance of
Street Rep in terms of latency. For each party, i.e., users, CS, SPs and queriers,
we measured the overhead of computing the cryptographic functions and re-
trieving data from database using Private Information Retrieval (PIR). We have
developed a prototype of Street Rep in Python. Our prototype leverages XPIR [2]
for PIR capabilities, as well as PyCrypto [16] as a basis for the implementation
of our cryptographic primitives.

In our experiments, we assumed that 1000 SPs are available and that users
can only have one account per SP.Users are assigned a random number of ac-
counts, up to 1000 accounts per user. The experiments are run on a regular PC
featuring an Intel Core i7 X980 @ 3.33GHz, and 8 GB of RAM.
Overhead of cryptographic functions In order to register, a user calculates
her blind commitment values (as described in §3.1), and sends them to corre-
sponding SPs. Figure 8(a) shows the average latency of computing the blind
commitments for a user with k accounts. Each point in this figure is the average
latency for 100 users with a specific number of accounts. It shows that, even
with 1000 accounts per user, the average overhead on the system is about 0.24
seconds (std err=0.004), and with less than 10 accounts per user, the latency
decreases to 0.003 seconds.

Figure 8(b) shows the overhead of the cryptographic operations performed
by CS to compute two signatures for each account, where the total number of
accounts is 1000, 10,000 and 100,000 respectively. Each point on the plot shows
the results for 10 databases with the same size. For a database with 100,000
accounts, the average latency is about 3,400 seconds, that is, a little less than an
hour (std err=15). Figure 8(b) indicates a linear relationship between the size
of database and the latency. Thus, if the total number of accounts is 1 million
then it takes about 9.4 hours to compute the signatures. Note that the signing
and storing phase can be done in parallel by multiple processes. Also, CS only
signs users’ data once at every round of the protocol. Depending on the system’s
requirements, scores may get updated every day/week/month.
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(c) Signature aggre-
gation by users

Fig. 8: Overhead of cryptographic operations: at user registration phase, on average,
a user with 1000 accounts only spends about 0.2 seconds to compute blind signatures.

The CS computes two signatures for each of 100,000 accounts in less than an hour.
Users aggregate their (2* 1000) rating signatures in about 6 seconds. Finally, queriers

verify aggregated signatures in 0.0005 seconds.

Figure 8(c) shows the overhead of cryptographic operations for a user to
aggregate her reputation ratings. The results are the average latency for 100
users with the same number of accounts. For a user with 1000 accounts, the
average overhead for unblinding and aggregating her signatures is about 5.9
seconds (std err=0.1). The latency decreases to less than 0.04 seconds when the
user has less than 10 accounts.

We also performed experiments to measure the time needed for a querier to
verify the overall reputation score. On average it is 0.0005 seconds (std err=4.41E-
5). This latency is independent of number of accounts for a user.

Overhead of PIRFigure 9(a) shows the average time needed for users with
k accounts to query and retrieve their data from the PIR server. In this ex-
periment, the CS database includes data (i.e., the two signatures) for total of
100,000 accounts. Figure 9(a) shows that users with 10 and 200 accounts respec-
tively on average spend about 0.02 seconds (std err=0.0002) and 0.57 seconds
(std err=0.04) to retrieve their data from the CS. Recall that if an user has m
accounts, he/she needs to make m PIR requests to the centralized server CS.
By using multi-query PIR [3], we expect that the performance of Street Rep can
achieve up to 40× faster over processing queries one at a time.
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Fig. 9: PIR Overhead: A user privately retrieves her 200 accounts from the CS
database in about 0.6 seconds. The size of database has a very small impact (about

0.006 seconds) on the retrieval time.
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In Figure 9(b), we set k = 10 to be a constant value and vary the database
size from 1000 to 100,000. Every data point here indicates the average results
of 10 different databases with the same size. This shows that the database size
only slightly impacts the latency of PIR operations. In particular, users with 10
accounts retrieve their data from the CS with 1000 and 100000 elements in 0.011
seconds (std err=7.7e− 05) and 0.017 seconds (std err=0.0002) respectively.

6 Discussion

In this section, we discuss about a few properties and limitations of our approach.
Overhead on the SPs: Street Rep imposes little overhead on the SPs. They are
only required to normalize the scores before sending them to the CS for updates.
Integrating this normalization process as part of the API provided to the SPs
is trivial. SPs, in return, are expected to push updates on a regular interval,
which is standard in many service platforms (e.g., commonly automated with
schedulers like Unix Cron).
Aggregation function: In Street Rep, the aggregated signatures are computed
using the geometrical mean over reputation ratings. For future work, we will
investigate the possibility of computing complex functions.
De-activation of accounts: As previously described in § 3.4, users in Street Rep
are not allowed to remove any of their accounts from their profiles. In some
situations, however, users may genuinely and legitimately not be interested in
using a particular online service anymore. A simple solution may reside in the
ability for users to move some of their accounts to an “inactive” stash, while
notifying queriers that the corresponding commitment values should be excluded
from the computation.
Anonymous credentials: One question that might arise is:“Why not use anony-
mous credentials?” With anonymous credentials, users obtain a distinct creden-
tial for each account, and credentials are provided to queriers individually. This
makes it trivial for an adversary (especially the SPs) to identify a user and link
her accounts just from the observation of her scores. In our system, no one, in-
cluding the SP or CS, should be able to link any account to a user’s identity. This
link must remain private at all times. Furthermore, anonymous credentials rely
on zero-knowledge proof protocols, requiring the user and the querier be online
and participate in the protocol at the same time. Our approach with Street-Rep
avoids this limitation.
Concluding remarks The privacy-preserving functionality that Street Rep pro-
vides is not available from any previously-existing model and opens the door for
the creation of a privacy-preserving Reputation Bank, as proposed by futurists
and technology thinkers [17].
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A Integrity and unforgeability

In this section, we discuss the impracticality for a user to increase her own
reputation score by cherry-picking, forging or usurping signatures of reputation
scores.

A.1 Cherry picking

The following demonstrates the impracticality for users to cherry pick commit-
ment values. A dishonest user, u, may try to only pick the signatures related
to her highest reputation scores, and discard signatures related to lower scores.
Formally, the user attempts to use a subset Î exhibiting her k best scores. We
denote by V̂ the set of these scores, and by Ĉ the corresponding commitment
values. During the computation of the aggregated signature, the user attempts
the following signature aggregation:

σ̂ = sig(d,

k∏
i=1

ν̂i · ĉi · t)

where ν̂i ∈ V̂, ĉi ∈ Ĉ and t is a valid fresh time stamp.
However, this aggregated signature would be rejected by the querier during

the verification phase, because the product of the cherry-picked scores does not
match the product of the user’s public commitment values:

∏k
i=1 ĉi 6=

∏k
i=1 ci. It

should also be emphasized that, while users may modify their public commitment
set over time, Street Rep only lets them include additional accounts, but existing
ones cannot be removed. Thus, the product of commitment values cannot be
adjusted to match a subset of cherry-picked accounts.

A.2 Preventing Usurping of Signatures

The following demonstrates the inability for a malicious user to usurp signatures
by replacing or mixing existing signatures.

In an attempt to increase their own score, users may also try to usurp other
users’ signatures, that is, claim those as their own and use them during the
computation of their aggregated scores. Since users are all able to query the CS
for any entry, they may attempt to replace or aggregate some chosen signatures
to forge a signature for a higher reputation score. There are two possible scenarios
described below.

Replacing signatures Recall that the link between user commitment val-
ues and identities is hidden by the fact that users employ blind tokens to interact
with the system. Thus, during the aggregation step of the protocol, users unblind
part of the message using the (secret) value r−1 as described in § 3. Signatures
stored in the CS are of the form:

σcs = sig(d, νi · t · bi)

https://doi.org/10.1145/3372297.3417239
https://doi.org/10.1145/3372297.3417239
https://doi.org/10.1145/3372297.3417239
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where bi is a blind token. However, these signatures, once unblinded by the user,
are of the form:

σu = sig(d, νi · t · ci)

where ci is a (unblinded) commitment value. The latter is used by users during
the aggregation phase, but in fact, there is no way for the querier to know if a
given signature (or more precisely, a product of signatures that they are getting
from the user) contains blinded or unblinded values. As a result, dishonest users
may attempt to swap one of their unblinded signatures, σu (that exhibits a low
score) with a random signature σ̂ obtained from the CS (that possibly exhibits a
higher score). Since users cannot unblind signatures for which they do not know
the associated secret value r−1, they may attempt to skip the unblinding phase
for such signatures. This may remain unnoticed by the querier if the user can
find a signature σ̂ along with a score ν̂ such that:

σ̂ = sig(d, ν · t · bi) = sig(d, ν̂ · t · ci)

and that the forged score ν̂ fits in the scale [1, µ] and is better than the original
(low) score ν: ν ≤ ν̂ ≤ µ. And also, by definition: 1 ≤ ν̂ = ν∗bi

ci
≤ µ.

However, the probability for an attacker to find such constraints is negligible,
because the range of possible values for any random ν̂ that the user may pick from
the CS is very large in comparison to [1, µ]: the domain of commitment values is
[0, 232 − 1] while the domain of blind commitment values is [0, 22048 − 1]. Thus,
the range of ν̂ is [0, 22016 · µ] and the probability that ν̂ hits the space of scores
is 1

22016 , which is negligible. Therefore, the probability that a randomly picked
signature from the CS yields a valid score while matching a valid commitment
value is negligible.

Mixing signatures. The adversary may generalize the previous attack and
replace some of her signatures with several signatures from the CS. For instance,
if the dishonest user has k identities, she may try to replace her signatures with
m signatures where k ≤ m, such that the forged score ν̂ satisfies:

1 ≤ ν̂ =

m∏
i=1

νi · t · bi

k∏
j=1

νj · t · cj

≤ µk and ν̂ >

k∏
j=1

νj .

If such ν̂ exists, then the user can claim that her aggregated score is equal
to ν̂, and forge a signature:

σ̂ = sig(d,

m∏
i=1

νi · t · bi) as it equals to sig(d, ν̂ ·
k∏
j=1

t · cj).

However, the probability for an attacker to find such signatures in practice
is negligible, for the same reasons as previously: The probability that ν̂ hits the
space of scores is even smaller than that in case 1. The maximum range of ν̂



24 Hauser et al.

depends on m and k and it is roughly in the order of 22048∗m

232∗k
. Thus the probability

that ν̂ hits the space of scores is 1
22048∗m−32∗k . This probability is very small, and

even if m == k, it is 1
22016∗k

. Therefore, the probability that a user can use a
signature as of hers is negligible.

Note that if k > m, then there is no benefits for the user in forging these
signatures, since it diminishes the overall score (by adding one more term in the
computation of the mean, see § 3.3).

Multiplying random numbers In the aggregation phase, a dishonest user u
with k identities may multiply the aggregated signatures, p and p′, by random
numbers x1 and x2 to forge signatures, p̂ and p̂′, in order to obtain a higher
overall score ν̂ such that:

ν̂ =

k∏
j=1

νj ∗ x2.

To succeed, one needs to find x and y such that:

xe (mod n) ≡ ye
′

(mod n′) ≡ z

This attack is impractical since, as demonstrated by Dodis et al. [9], the claw-
freeness property of RSA renders adaptive chosen plaintext attacks extremely
difficult. In this particular case, finding a claw (x, z) implies y = x.ze(modn),
which implies inverting RSA on a random input y.
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