
SandPuppy: Deep-State Fuzzing Guided by Au-
tomatic Detection of State-Representative Variables

Vivin Paliath, Erik Trickel, Tiffany Bao,
Ruoyu Wang, Adam Doupé, and Yan Shoshitaishvili

Arizona State University
{vivin, etrickel, tbao, fishw, doupe, yans}@asu.edu

Abstract. Current state-of-the-art automated fuzzing approaches cannot
explore deep program-states without human assistance. Recently, Ijon al-
lowed humans to provide code-annotations on the target to expose program
state to the fuzzer. However, this requires a human to read, understand, and
annotate the program source, which limits scalability and applicability.
In this paper we introduce SandPuppy, a technique that automatically identi-
fies potential state-representative variables and applies Ijon-style instrumenta-
tion to expose corresponding state to the fuzzer. To identify these variables and
their semantics, SandPuppy collects runtime variable-value traces from an
initial fuzzing run and analyzes them along with the program source to instru-
ment the program and expose internal state to the fuzzer. This process repeats
and identifies additional variables, allowing the exploration of deeper states.
We evaluated SandPuppy against synthetic and real-world targets repre-
senting various fuzzing-challenges. The results show that SandPuppy can
automatically solve problems that purely coverage-based approaches cannot
solve without assistance from human experts. For example, SandPuppy can
automatically play and solve levels of Super Mario Bros, maze programs, and
identify complex, deep states in real-world targets such as libtpms, resulting
from combinations of previously identified states. Evaluating SandPuppy on
real-world targets such as jsoncpp, libtpms, PcapPlusPlus, and readelf
demonstrates that SandPuppy generally improves coverage compared to
AFL, AFL++, LafIntel, RedQueen, SGFuzz, and Ferry. In all, Sand-
Puppy identified ten unknown vulnerabilities in PcapPlusPlus and one
unknown vulnerability in dmg2img.

1 Introduction

In recent years, fuzz testing, a dynamic-analysis technique that attempts to trigger
bugs with pseudo-random input, demonstrated its effectiveness by uncovering a
large number of vulnerabilities in diverse software. Hence, fuzzing received significant
interest in both academia [4, 10, 32, 35, 39, 45, 3] and industry [46, 7, 22, 1].

Modern fuzzing research has predominantly focused on maximizing code coverage
— such as basic block coverage and branch/edge coverage — based on the notion
that covering more code triggers more vulnerabilities. This is usually done by sat-
isfying previously-failing program branch conditions, whether by solving them using
symbolic techniques [39, 45], identifying specific parts of program input that should

2 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

be stochastically mutated to increase the chance of satisfying conditions [4, 10], or
modifying the conditions themselves [32]. As a result of these interventions, code
coverage is increased and additional bugs are found.

Interestingly, increased code coverage is not always correlated with more discovered
vulnerabilities: Shoshitaishvili et al. showed that fuzzers could use human-assisted
input mutation to find more vulnerabilities—while triggering strictly less code—than
standard (automated) code-coverage guided fuzzers [38]. One explanation is that not all
code coverage is equal [41], and coverage alone does not imply good exploration of a pro-
gram’s state space. Ijon furthered this concept using manual source-code annotations
to extend traditional code coverage feedback with state-representative variables [3].
The resulting state-coverage guided fuzzer showed promise in—with human help—
triggering program states that standard code-coverage guided fuzzers cannot reach.

The next clear step in exploring the impact of state coverage on analysis outcomes
is automatic reasoning about state-representative variables. Recent work in this area
has made progress toward detecting state-representative variables [50, 5], but either
use them purely to increase code coverage (rather than state coverage) [50] or is only
applicable to specific types [5].

In this paper, we propose SandPuppy, the first technique to automate the
process of identifying and using state-representative variables in fuzzing to increase
state coverage, and thus detecting state-dependent bugs.

In a reductive sense, every variable used in a program represents some sort of state.
However, this does not necessarily imply that variables are equally representative to
explore program state-space. Annotating too many variables overwhelms the fuzzer,
as it explores unproductive execution paths due to the generation of useless inputs [3].
Therefore, a core challenge for SandPuppy then, is to select a minimal subset of
state-representing variables from the set of all variables used by a program.

Our solution is inspired by recent observations that a significant number of pro-
gram states are encoded in a subset of integer variables in a program [50, 3, 5]. Building
on this, SandPuppy identifies candidate integer-variables in a target program and
then uses simple, yet novel heuristics, on dynamic runtime value-traces aggregated
across multiple executions, to gain a coarse understanding of their semantics. For such
variables, SandPuppy uses one of several annotation methods (depending on the
identified variable semantics) to add these variables to a fuzzer’s coverage feedback.
SandPuppy enables state-coverage guided fuzzing without human effort and without
overwhelming the fuzzer with spurious feedback.
Contributions. In summary, our contributions are as follows:

– We design an approach for detecting state-representative variables in a program
and for exposing associated state to guide fuzzing towards deep, complex states.

– We implement this approach into a research prototype called SandPuppy.
– We evaluate SandPuppy against custom targets representing specific fuzzing-

challenges as well as real-world programs. SandPuppy not only identifies inter-
esting state-representative variables, but the exposed state allows it to explore
a deeper and more diverse set of program states and solve certain challenges that
purely coverage-based fuzzing techniques cannot. SandPuppy also identifies ex-
isting and novel vulnerabilities and improves coverage, compared to existing tools.

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 3

To support open science, we will open source our research artifacts, including data
sets, seeds, and the SandPuppy prototype.
Ethics. We reported all identified vulnerabilities (11 in PcapPlusPlus and 1
in dmg2img). The PcapPlusPlus developers agreed with us and have fixed all
vulnerabilities. The dmg2img developers did not respond to our disclosure, and we
are continuing to contact them.

2 Background

Fuzzers aim to generate inputs exploring novel program states. Intuitively, the more
states explored, the greater the chance to find vulnerabilities. However, lacking a way to
directly measure state, most fuzzers tend use code coverage as a proxy. Coverage-based
fuzzers, such as AFL, use a code-coverage metric which approximates the program’s
state, to identify inputs triggering novel program states. AFL places instrumentation at
the edges of the program’s control flow graph (CFG) in order to track edge-to-edge tran-
sitions. The instrumentation identifies transitions using tuples of identifiers (ids,idd),
where ids is the source-block identifier and idd is the destination-block identifier.

AFL approximates the execution state of a program with a bitmap. Roughly
speaking, when the program executes a transition, AFL hashes the tuple (ids,idd)
to an index in the bitmap and increments the counter at that index. AFL also uses
a global bitmap to store the history of all bitmaps for the current fuzzing session.
Monitoring for changes in the global bitmaps allows AFL to determine whether the
input used for the current test is “interesting” (i.e., if it triggered previously-unseen
program transitions and resulted in new coverage).

Directly measuring program state-space coverage during fuzzing is difficult, and
modern coverage-guided fuzzers use code coverage as an approximation of program
state-space coverage. However purely coverage-guided fuzzers cannot effectively ex-
plore the state space of a program [3], as code coverage does not always correlate to
program-state coverage. Ijon [3] addresses these issues by augmenting the coverage
bitmap with values of human-annotated state-representative variables to increase the
correlation between bitmap coverage and state space coverage: For example, consider a
maze program where each valid input character permits a move direction, as shown in
Figure 1. Although the user has many possible positions and paths, a coverage-guided
fuzzer that only considers code or branch coverage will struggle to explore them.
Ijon exposes x and y to the fuzzer, enabling the fuzzer to recognize inputs leading to
new locations in the maze as interesting, essentially creating a player-location-based
coverage bitmap (the bottom of Figure 1). This results in a better exploration of the
state space and a solution to the maze.

Ijon requires human annotation of state-representative variables, which does
not scale. In this paper, we explore techniques to automatically infer and use state-
representative variables to improve fuzzing efficacy.

3 Overview

We propose SandPuppy, a technique that automatically identifies and instruments
state-representative variables, thus exposing program state to the fuzzer.

4 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

Fig. 1: Comparison of edge-transition based and player-location based coverage-maps
for a maze program. Edge-transition cannot identify the distinct states resulting
from different player locations whereas player-location can.

Fig. 2: SandPuppy’s architecture is comprised of three phases: a trace-gathering phase
that gathers variable value traces from an instrumented binary, a categorization and
instrumentation phase that categorizes variables based on value traces and performs
feedback instrumentation using selected variables, and a parallel-fuzzing phase where
the instrumented binaries are fuzzed together. Inputs generated by the parallel-fuzzing
campaign are used to generate additional traces and as seeds for subsequent runs.

Figure 2 provides an overview of SandPuppy’s fuzzing pipeline. Given buildable
program source, SandPuppy carries out the following steps iteratively, identifying
and selecting new state-representative variables in each iteration:

Collect variable-value traces: SandPuppy instruments the target program to
output integer-variable value traces. It then fuzzes this instrumented binary using
a standard fuzzer for a fixed amount of time, using its accumulated set of test-
cases (seeds). SandPuppy uses the trace results to select a tractable subset of
state-representative variables, as described in Section 4.

Identify state-representative variables: SandPuppy analyzes the collected traces
to identify potential state-representative variables and their semantic categorization
(Section 5) using a set of heuristics (defined in Section 6 and applied in Section 7).
Traces from inputs that result in crashes or errors are excluded to minimize noise
by ignoring invalid states.

Fuzz: SandPuppy generates instrumented binaries that collect feedback from cor-
responding state-representative variables, as detailed in Section 8. It then runs a
parallel-fuzzing session using this set of binaries. Note that generated inputs are

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 5

periodically synchronized between all fuzzing instances. While it is possible to generate
a single binary for all identified variables, this significantly increases the likelihood
of collisions with a single bitmap.
Repeat: The inputs generated by the parallel-fuzzing session are used as seeds for
the next run’s variable-value trace collection and fuzzing.

4 Trace Collection

SandPuppy classifies variables by observing their use by the program. It uses a trace
collecting step to record the complete history of values that each integer variable
receives throughout the instrumented program’s execution.

SandPuppy needs a variety of traces. Consider a variable counting up to a number
provided by input: if it is always zero, we have a single trace of the variable, which is
indistinguishable from a trace of a constant variable set to zero and never modified.

For the first iteration of SandPuppy, we leverage an initial fuzzing phase to
generate traces on multiple inputs, mitigating the influence of invalid inputs on later
variable classification by discarding crashing and erroring traces. On subsequent itera-
tions, we directly use inputs identified previously to generate traces. In this manner we
can detect, categorize, and instrument any newly-detected variables. We also filter out
the traces of any variable whose category has not changed since the last run, assuming
that resources would be better spent on tracing and classifying still-changing variables.

For the variable v, we define the value trace T as a sequence of tuples (m,ν) where
m is the source line-number where v was modified and ν is the current value of v. We
also define T to be a sample of all traces collected for that variable from our fuzzing
session; i.e., assuming the program was run against n inputs T=(T1,T2,...,Tn).

5 Semantic Categories

SandPuppy instruments state-representative variables to approximate program
states at runtime. Different variables contribute differently to this approximation.
Here, we describe categories of state-representative variables and our intuition of how
they represent the application’s state space. As we are not attempting to devise a
general and exhaustive taxonomy of “state-representative variables”, we focus on
specific categories that see near-ubiquitous use across a wide variety of programs.
Enums. Enumerated types represent a fixed set of named values. While internal
representation is arbitrary, they typically compile to integer values. Enums are used
to enhance readability and leverage the type system to prevent variables from being
set to invalid values. They can also be correlated with input, especially those involving
structured formats.

Format processing code often feature variables encoding state associated with
user input, which are attractive instrumentation targets. Listing 1.1 shows a message-
processing function, where different message combinations can affect program state in
unique ways. Coverage-based fuzzers identify values of mtype, but may not recognize
combinations of messages as interesting states as they trigger already-seen control-flow
edges. Conversely, fuzzers that can reason about the value of mtype directly may

6 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

void process_input(const char* input, state* state) {
parsed_messages pmsgs = parse_input(input);
for (int i = 0; i < pmsgs.num_messages; i++) {

msg_type mtype = process_msg(pmsgs.messages[i], state);
char* mtype_str = get_message_type(msg_str);
if (strcmp(mtype_str, "type_1") == 0) {

mtype = TYPE 1;
process_type_1_msg(msg_str, state);

} else if (strcmp(mtype_str, "type_2") == 0) {
mtype = TYPE 2;
process_type_2_msg(msg_str, state);
...

Listing 1.1: Enum variables exposing known state changes.

unsigned int processed_messages = 0;
void process_message(message* msg) {
for (int i = 0; i < get_num_elements(msg); i++) {

process_element(msg, i);
}
processed messages++;

}

Listing 1.2: Counter variables exposing memory-related state.

be able to trigger additional program states. Similar code can be found in a wide
variety of real-world software, such as FFMpeg, jsoncpp, libjpeg, and libpcap.
Counters. Counters are variables that count up or down to some value. We assume
that counters are monotonically increasing or decreasing, and that they may do so by
arbitrary (and varying) amounts. Counters can either be static: counting to a fixed
value in every program execution, or dynamic: counting to different values in every pro-
gram execution. Counters may also correlate with input as programs use them to count
input elements or to sum input-element sizes. By guiding fuzzers towards maximum
counter values, states revealing boundary and edge-case conditions can be explored.

Listing 1.2 shows an example of counter usage. By exposing the counter values
i and processed messages to the fuzzer and favoring executions that maximize
their values, the fuzzer will explore program states involving both a larger number
of messages and a larger number of elements per message.
Related Variables. Programs often feature related variables whose combined values
represents a unique state. For example, variables x and y used to represent a player’s
location in a maze are related variables. By identifying related variables and exposing
their combined state, fuzzers gain insight into a program’s state space.

6 Semantic Category Heuristics

We use several heuristics on traces collected in Section 4 to classify variables as
state-representative and sort them into categories that are described in Section 5.
Non-Semantic Categories. We start by defining heuristics to identify constants
and booleans; two categories of variables that are not state-representative. Constants
do not expose any useful state, as they do not change values. While booleans can
expose useful state, coverage-based fuzzing is usually sufficient to explore these states
as booleans often dictate control flow.

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 7

First, we define the observed set of values of the variable v as V =
⋃

T∈T
{
ν |

(m,ν)∈T
}
. We will also define the number of unique values hnuniq= |V|. If hnuniq=1,

then it is highly probable that the variable is a constant. However, if hnuniq=2 and
V={0,1}, then it is likely a boolean. There is one surprising case of constants: a vari-
able initialized to zero and then set to a value later. To handle this case SandPuppy
categorizes variables with V={0,n} where n≠1 as constants.

6.1 Semantic Categories

Enums. We define a heuristic for identifying enums that take on values that are either
directly present in the input or are mapped to certain input values. Additionally, we
also assume that an arbitrary number of such values exist in the input. This means
that, for enums, the number of times it is modified may correlate with the input size.
Let us define the function isz :2T →Z≥0 that returns the size of the input used to
generate the trace T . We then have S=(isz(Ti) |Ti∈T) and M=(|Ti| |Ti∈T).

We can now calculate the Pearson correlation coefficient for our sample, called

the times-modified to input-size correlation, as htmisc=
∑|T|

i=1(si−s̄)(mi−m̄)√∑|T|
i=1(si−s̄)2

√∑|T|
i=1(mi−m̄)2

.

The closer htmisc is to 1, the more likely that the variable is set based on values from
the input. Note that this measure has some caveats, particularly if the discrete input
elements are arbitrarily sized. Consider the example in Listing 1.1. With arbitrarily-
sized messages, the program can process 3 messages of size n each, or a single message
of size 3n. In the first case the enum variable is modified three times, whereas in the
second case it is modified only once. However, in both cases the input size is 3n.

Consider another example demonstrated in Listing 1.1: The enum variable mtype
is set based on the value of the string mtype str. Also, mtype is modified on three
lines; one for each message type. This means that if the number of lines where the
variable is modified equals the number of unique values it can take, it is probably
part of a construct such as the one in Listing 1.1. Therefore, we define the number
of modified lines as hnmod=

∣∣⋃
T∈T

{
m |(m,ν)∈T

}∣∣.
We also consider the case where values are assigned without being part of a

structure similar to Listing 1.1. Here, the variable is only modified on one line.
Counters. We created several heuristics to identify if a variable is a counter. Our first
intuition is to classify variables correlated with input size, as counters. This allows
us to detect variables being used as such without detecting if they actually “count”
(which other heuristics will do). If a strong correlation exists between a variable’s
maximum value in a trace and the input size for that trace, it is categorized as a
counter. We first define S= (isz(Ti) | Ti ∈T) and Vmax = (νmax

i | Ti ∈T∧νmax
i =

max({νi | (mi,νi)∈Ti})). Using this we can calculate the Pearson correlation coef-
ficient for our sample, which we call the maximum-value to input-size correlation,

as hmvisc=
∑|T|

i=1(si−s̄)(νmax
i −ν̄max)√∑|T|

i=1(si−s̄)2
√∑|T|

i=1(ν
max
i −ν̄max)2

. Using hmvisc as a measure of input-size

correlation—the closer the value is to 1, the more likely it is that the variable holds
values correlated with input size.

Next, we develop heuristics to detect counters and to distinguish between
static and dynamic counters. We first define maximum-values variance as hmvv=

8 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

∑|T|
i=1(ν

max
i −ν̄max)2

|T| . This heuristic is the variance of the observed maximum values of

the variable. As static counters count over the same set of values every time, the cor-
responding value of hmvv will be 0, while dynamic counters will have a non-zero value.

The second heuristic, the average value-set-cardinality ratio, is defined as havscr=∑
T∈T

|{ν|(m,ν)∈T}|
|V|

|T| . This heuristic is an average of the ratio of the number of unique

values in a trace, and the number of unique values across all traces for a particular
variable. If havscr is 1, then the variable takes on the exact same set of values in every
trace. If this variable is a counter, then it must be static, and we can ignore it as it
does not expose useful state.

The next set of heuristics for identifying counters requires pre-processing of variable
traces. The intent is to identify segments of traces that could be counter segments,
meaning that the segment reflects a variable counting to some value. This is important
because counters are frequently used multiple times in a single run, and so a trace
can contain multiple such segments. It also ensures that each segment contains at
least two values and that there are no repeating values in a segment. Runs can occur
if a piece of code with a counter is called repeatedly, where the counter loops only
a single time. But it can also happen in the case where a variable is being repeatedly
set to the same value. Due to this ambiguity, we collapse such runs into a single value.

The first heuristic using counter segments is called directional consistency: hc=
|∑T∈T

∑
S∈counter segments(T)dir(S)|∑

T∈T|counter segments(T)| where dir(S)=1 if s2>s1 and -1 otherwise. The pur-

pose of the directional consistency heuristic is to identify counter variables that are
incremented or decremented consistently. For counters, hc will be close to 1.

The final heuristic using counter segments is called loop-sequence proportion:

hlsp=
∑

T∈T

∑
S∈counter segments(T)∧|S|>2|S|∑

T∈T|T | . This heuristic measures what proportion of a

variable’s traces are part of a loop sequence. For counter variables, this value should
be close to 1. We deliberately exclude counter segments of length 2 or less, as segments
of the form [a,b] where a>b or a<b are common, meaning that even non-counter
variables have a hlsp close 1. However, it is far less likely for such variables to have
segments of size 3 or higher where they are consistently incremented or decremented.

7 Identification of Semantic Categories

Once a set of variable-value traces are discovered, SandPuppy uses heuristics de-
fined in Section 5 to categorize each variable into a semantic category. Note that the
heuristics have thresholds associated with them, which we define here, and Section 9 de-
scribes the thresholds set during the evaluation. Variables deemed state-representative
are instrumented to provide feedback during fuzzing (described in Section 8).
Enums and Counters. To determine an enum, SandPuppy checks if htmisc is
greater than or equal to a threshold τtmisc. If it is modified on multiple lines, Sand-
Puppy checks if the number of lines is the same as the number of values it receives.

SandPuppy identifies variables correlated with input size by checking if the
variable’s hmvisc feature is greater than or equal to the threshold τmvisc.

For counters, we check to see if a variable’s hlsp and hc are greater than or equal
to the threshold τlsp and τc. To determine if a counter is static or not, SandPuppy

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 9

checks if hmvv is 0 (i.e., it always counts to or from the same value) and havscr is 1
(i.e., it counts over the same set of values every time).
Related Variables. SandPuppy identifies related variables starting with all vari-
ables from the specified function and file that are not constants, booleans, or unclas-
sified variables, to include those already been categorized as enums or counters.

SandPuppy then creates a candidate list of related variables for each variable.
First, SandPuppy chooses one of the lines where the variable is modified. Sec-
ond, it scans up to δmax lines before and after to identify other modified variables.
SandPuppy does not do this for every line that modifies the variable because the
intuition is that related variables are modified in close proximity to each other. Lastly,
SandPuppy prunes each variable’s candidate list to include only those variables that
it considers related, by ensuring that (1) both variables are modified on the same
number of lines and (2) their trace-length distributions are identical.

SandPuppy’s pruning strategy does exclude variable pairs that have identi-
cal trace-length distributions. For example, SandPuppy will not identify related
variables when one variable is modified on one line, but the second is modified on
mutually-exclusive conditions. Here, for any trace generated from the same input,
both variables be modified the same number of times, even if overall, the second
variable is modified on more lines than the first. This makes feedback instrumentation
simpler by avoiding reasoning about the context in which variables are modified.

8 Feedback Instrumentation

Having mapped variables to semantic categories, SandPuppy instruments state-
representative variables to generate several variants of the program that expose
corresponding feedback information.

Our implementation is based on the feedback mechanisms proposed in Ijon [3].In-
strumentation uses LLVM passes based on the FuzzFactory framework [31]. In all
cases, we use the FuzzFactory max reducer function to aggregate feedback across
multiple inputs. The max reducer function marks an input as interesting if in the
corresponding bitmap, a new location is set, or if a location has a higher value.
Permutation Feedback. We perform this instrumentation on enum variables to
identify inputs resulting in unique permutations of values, potentially allowing explo-
ration of associated complex-states. We generate a variant with this feedback for each
identified enum variable. This instrumentation is similar to Ijon’s state-change log.
Maximization Feedback. This instrumentation is similar to the IJON MAX(x)

primitive [3]. For dynamic counters and variables correlated with input size, we
employ instrumentation to guide fuzzing towards inputs that maximize their values.
We generate a single variant with this feedback for all identified counters.
Related-variable Maximization Feedback (RVMF). We perform this instru-
mentation on every related-variable pair; it is similar to the IJON MAX(slot, x)

primitive [3]. It maximizes the value of one variable with respect to another. A
real-world example of such code can be seen in FFMpeg’s DTS-HD demuxer. We
generate two instrumented variants for each identified pair of related variables, as
we do not know which variable is the dependent one.

10 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

Related-variable Combination Feedback (RVCF). This instrumentation is
performed on every related-variable pair, and is similar to IJON SET(hash ints(x,

y)) annotation in Ijon [3].

9 Evaluation

We perform evaluations to understand SandPuppy’s ability to automatically add
state-representative variable feedback to fuzzing, and the impact of this to find bugs.
Reasoning about states. We first develop understanding of SandPuppy’s core
contribution by evaluating its variable semantic category identification in Section 9.1
and exploring the value of this identification in the actual exploration of complex
states in software in Section 9.2.
Fuzzing for vulnerabilities. We then perform a comparative evaluation of Sand-
Puppy against state-of-the-art fuzzers, both in terms of achieved code coverage in
Section 9.3 and triggered vulnerabilities in Section 9.4.
Understanding variable impact. For a deeper understanding of individual cat-
egories identified by SandPuppy, we perform an ablative evaluation in Section 9.5.

We performed initial fuzzing for trace-gathering and classification on a Linux
Mint 20.2 machine with an Intel Core i9-8950HK CPU and 32 GB RAM. Parallel
fuzzing was performed on a 40-node Kubernetes cluster with each node having two
Intel(R) Xeon(R) CPU E5-2670 v2 processors. Each fuzzing instance receives identical
resources during the parallel-fuzzing session.

We set initial fuzzing time to one hour, and found that the instrumentation
slows the fuzzer down significantly, making it equivalent to around 5-10 minutes
of fuzzing with a regular AFL instrumented binary. The results will demonstrate
however, that even with this performance hit, SandPuppy can identify and categorize
state-representative variables.

Through manual experimentation and observation on libtpms and the test-bed
described in Section 9.1, we derived the following threshold values: τmvisc = 0.6,
τlsp = 0.7, τc = 0.8, τtmisc = 0.5, and δmax = 6. We note that these values may be
program dependent and could potentially vary between programs. However, in our
experiments these threshold values appeared consistent across multiple programs.

9.1 Identification of Semantic Categories

There is a fundamental trade-off between extraneous instrumented state representative
variables (too many variants slow down fuzzing) and insufficient state representative
variables (missing exposing state to fuzzing). As our goal is to improve fuzzing efficacy,
we evaluated SandPuppy against a custom test-bed and against real-world programs
to better understand its state reasoning. We present some results here, and detailed
results for our synthetic test bed in the to-be-released extended version.

We evaluated SandPuppy’s automatic variable categorization on the following
programs: libpng (1.6.37), libtpms (0.8.3), jsoncpp (1.9.5), dmg2img (commit
a3e4134), and Super Mario Bros. In this experiment, we manually created ground-
truth of the semantic category of the variables. We discovered minor discrepancies

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 11

Table 1: Sample of classified variables with labels from various real-world programs.
Variable names include the file and function name. The last column specifies whether
the variable was identified as state-representative or not.

Target Qualified Variable Name Label State Representative

libpng
pngrutil.c:png check chunk name:i:3140 static counter N
pngrutil.c:png check chunk name:c:3147 enum from input Y
pngrutil.c:png read filter row up:i:3956 dynamic counter Y

dmg2img
dmg2img.c:percentage:i:77 static counter N
base64.c:decode base64 char:c:49 enum from input Y
dmg2img.c:read kolyblk:k.XMLLength:148 dynamic counter Y

smbc
PPU.cpp:PPU::writeDMAEh:i:501 static counter N
Main.cpp:mainLoop:world pos:309 related variable Y
Main.cpp:mainLoop:pos y:311 related variable Y

limited to dynamic counters being classified as enums and some enum variables that
were not identified. Two factors cause this: (1) lack of a sufficiently-representative
trace-distribution for a variable and (2) ambiguity inherent in our approach for
detecting enums, which depends on correlation between input size and how often
the variable is modified. Our analysis, a sample which is in Table 1, shows largely
accurate identification of enums, static and dynamic counters, and related variables.

We also compared the state-representative variables SandPuppy identified to
those manually identified by Ijon [3] and found every variable manually identified by
human-experts, including command.index in libtpms and Mario’s screen position
in Super Mario1. SandPuppy identified the same variables as Ijon, and with the
appropriate semantic category.

9.2 Exploring Complex States

We evaluated SandPuppy’s ability to explore complex state typically not accessible
to purely coverage-based approaches; games and protocol parsers present a significant
challenge as certain states can only be reached through a particular input sequence.
We limited SandPuppy to a single run as initial trace-collection was sufficient to
correctly identify and categorize variables that expose state information.
Super Mario Bros. We used the game version modified by Ijon authors [3]:
Changes include reading input from stdin and speedrunning changes. SandPuppy
identified a number of related variables, including those describing Mario’s position
in the world. We fuzzed Super Mario Bros with AFL and SandPuppy for up to
200 hours using identical seeds, recording Mario’s progress. Results in Table 2 include
how often the level was solved, the median time until the best solution was found
(hh:mm), and the median percentage of distance covered.

SandPuppy solved all worlds except two and found the warp zones in worlds 1-2
and 4-2. World 2-1 could not be fully solved as Mario cannot use the spring due to
the speedrunning code-changes. In world 4-4, Mario repeatedly gets stuck in a dead
end. SandPuppy solved worlds 6-2 and 8-4 that Ijon could not.

While most solutions were found by targets using RVMF from player coordinates,
some were using RVCF from the same variables. In a few cases, targets using RVMF

1 Note that libpng is not included in the released data: https://github.com/RUB-
SysSec/ijon-data

12 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

Table 2: SandPuppy, AFL, and Ijon playing Super Mario Bros (3 runs each).
We show how often the level was solved and the median distance traveled. For
SandPuppy and AFL, we include the median time (hh:mm) to find the solution.

SandPuppy AFL Ijon

World Solved Time % Distance Solved Time % Distance Solved % Distance
1-1 ✓ 27:58 100% ✗ 168:04 69% ✓ 100%
1-2 ✓ 30:03 100% ✗ 96:15 68% ✓ 100%
1-3 ✓ 41:10 100% ✗ 58:04 53% ✓ 100%
1-4 ✓ 04:47 100% ✗ 32:47 87% ✓ 100%
2-1 ✗ 46:55 94% ✗ 136:42 65% ✗ 94%
2-2 ✓ 04:13 100% ✗ 61:37 74% ✓ 100%
2-3 ✓ 05:15 100% ✗ 40:25 81% ✓ 100%
2-4 ✓ 05:38 100% 2/3 125:36 100% ✓ 100%
3-1 ✓ 52:19 100% ✗ 10:00 29% ✓ 100%
3-2 ✓ 09:42 100% ✗ 54:29 66% ✓ 100%
3-3 ✓ 12:02 100% ✗ 90:18 94% ✓ 100%
3-4 ✓ 07:09 100% ✗ 26:21 74% ✓ 100%
4-1 ✓ 09:51 100% ✗ 72:03 95% ✓ 100%
4-2 ✓ 03:54 118% ✗ 18:18 57% ✓ 118%
4-3 ✓ 13:44 100% ✗ 26:31 56% ✓ 100%
4-4 ✗ 04:13 83% ✗ 128:20 82% ✗ 82%
5-1 ✓ 12:05 100% ✗ 192:01 45% ✓ 100%
5-2 ✓ 18:01 100% ✗ 179:52 82% ✓ 100%
5-3 ✓ 08:42 100% ✗ 91:03 63% ✓ 100%
5-4 ✓ 05:16 100% 1/3 78:34 100% ✓ 100%
6-1 ✓ 10:34 100% ✗ 02:28 47% ✓ 100%
6-2 ✓ 136:20 100% ✗ 11:17 37% ✗ 82%
6-3 ✓ 09:08 100% ✗ 32:03 85% ✓ 100%
6-4 ✓ 04:03 100% 1/3 63:22 100% ✓ 100%
7-1 ✓ 22:34 100% ✗ 196:51 68% ✓ 100%
7-2 ✓ 10:17 100% ✗ 178:09 82% ✓ 100%
7-3 ✓ 12:43 100% ✗ 19:40 81% ✓ 100%
7-4 ✓ 08:55 100% 1/3 28:21 100% ✓ 100%
8-1 1/3 164:29 100% ✗ 21:16 22% 2/3 100%
8-2 1/3 199:26 100% ✗ 47:05 60% 2/3 100%
8-3 ✓ 10:47 100% ✗ 19:12 72% ✓ 100%
8-4 ✓ 21:10 100% ✗ 09:25 47% ✗ -

from Mario’s world and screen x coordinates also found solutions. As the latter is
constant, this normally causes Mario to deadend. However syncing inputs with other
fuzzing instances appears to have a synergistic effect, allowing one with a simple
but incomplete strategy to improve on a partial solution from another instance. We
believe this allowed SandPuppy to solve levels 6-2 and 8-4 when Ijon could not.

Ijon also examined the exploration of complex state in maze programs, and we
discovered that SandPuppy was able to successfully solve all mazes, including one
of our own creation. We do not present the details due to space constraints.

State Exploration Evaluation. We evaluated SandPuppy’s ability to explore the
state-space of stateful parsers on the libtpms library. This is a real-world software
emulator for a Trusted Platform Module (TPM), and was also used in Ijon [3].
The protocol defines various command-types and associated payloads, which affect
processor-state in different ways.

To evaluate the system on generating complex messages over a significant time-
frame, we fuzzed libtpms for over 100 hours with SandPuppy, AFL, AFL++,
RedQueen, and LAFIntel, using diverse seeds and equal compute.

We evaluate state-space exploration by tracking the following: total number of
unique command-sequences, counts of unique command-sequences of different lengths,

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 13

Fig. 3: Unique command-sequences with parameter size found over time in libtpms.
SandPuppy consistently finds more unique-sequences throughout the session com-
pared to other fuzzers, which “stall” as fuzzing progresses. The y-axis is in log scale.

Table 3: Number of distinct command subsequences and total unique sequences
found by all fuzzers in libtpms, without accounting for command parameter-size
and with. SandPuppy outperformed all other fuzzers.

Sub-seq. Length AFL AFL++ LAFIntel RedQueen SandPuppy

1 96 / 737 94 / 741 105 / 876 97 / 783 111 / 115,751
2 301 / 978 328 / 1,050 392 / 1,259 348 / 1,077 671 / 116,613
3 413 / 691 589 / 932 677 / 1,098 671 / 989 879 / 2,659
4 461 / 633 865 / 1,101 907 / 1,172 1,075 / 1,324 1,186 / 1,792

Unique Sequences 1,324 / 1,991 2,137 / 2,840 1,882 / 2,769 2,706 / 3,379 2,998 / 119,278

Table 4: Number of variables detected after each trace-generation step of each run.
Variables detected

Target
Run

Initial 1 2 3 4 5

jsoncpp 90 107 107 107 108 108
libtpms 554 872 912 912 912 945

PcapPlusPlus 384 495 499 500 506 506
readelf 314 595 626 636 637 640

and counts of unique command sub-sequences of lengths 1, 2, 3, and 4. We also
tracked command parameter-sizes, which helps distinguish between different varieties
of the same command. SandPuppy was able to automatically identify and correctly
categorize state-variables holding this information.

The results show that SandPuppy outperforms other fuzzers after a single run.
SandPuppy found more unique sub-sequences overall, and more unique sequences
of various lengths as well; especially when incorporating parameter size (Table 3).
Based on sequences over time (Figure 3), SandPuppy finds them at a higher and
relatively-constant rate compared to other fuzzers.

9.3 Coverage Evaluation

We used jsoncpp, libtpms, PcapPlusPlus (commit a817631), and readelf
(binutils 2.32), and evaluated SandPuppy against AFL, AFL++, LAFIntel,
RedQueen, SGFuzz and Ferry.

We ran SandPuppy for 6 iterations (runs), 4 hours each, for a total fuzzing-time
of 24 hours. As the number of SandPuppy targets vary with each run, a one-to-one

14 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

Table 5: Improvement over baseline coverage. The value in parentheses is the percent-
age of unique coverage relative to the baseline. For Ferry comparison is done only
using basic-block counts as it uses a symbolic approach and does not have initial seeds.

Coverage Improvement (%) Blocks Covered

Target
Fuzzer

AFL AFL++ LAFIntel RedQueen SGFuzz SandPuppy Total Ferry SandPuppy

jsoncpp 45.78 (0.00) 46.09 (0.00) 45.98 (0.00) 45.76 (0.00) 42.63 (0.33) 46.65 (0.00) 47.10 623 1314
libtpms 96.78 (0.00) 111.77 (0.76) 112.26 (0.49) 111.06 (0.49) 0.33 (0.00) 113.78 (5.67) 120.11 47 3923

pcapplusplus 28.37 (0.00) 34.23 (0.00) 35.97 (0.00) 86.23 (10.67) 69.25 (0.00) 85.70 (10.40) 97.31 251 4910
readelf 235.58 (1.37) 188.52 (1.49) 174.74 (3.8) 178.11 (14.25) n/a 261.48 (9.6) 292.32 342 8473

comparison based on equal compute is difficult. We therefore calculate the rounded-
up average of the number of targets fuzzed in each SandPuppy run, and allocate
that many parallel-fuzzing sessions for the other fuzzers, which we then fuzz for 24
hours. The SGFuzz and Ferry experimental setup was similar as described by the
respective authors, and were run for 24 hours as well.

Instrumented variables are recognized only if traces execute their code path.
Table 4 shows that SandPuppy detects an increasing number of variables in the
trace-generation phase, after each fuzzing run. This allows it to potentially explore
additional complex states and also suggests that coverage increases over each run. To
quantify, we calculated the percentage increase over baseline coverage, which is derived
from the initial seeds provided to all fuzzers. We also calculated the percentage of
uniquely covered blocks with respect to baseline coverage for each fuzzer, to quantify
uniqueness of coverage (see Table 5).

The results (Table 5) show that SandPuppy superseded or matched the perfor-
mance of the other fuzzers in raw coverage improvement on jsoncpp, libtpms, and
readelf. For pcapplusplus, SandPuppy’s achieved 85.70% coverage improvement
compared to RedQueen’s 86.23%. SandPuppy provides significant unique coverage
on libtpms, PcapPlusPlus, and readelf.

A few cases stood out when inspecting unique basic blocks that were covered by
SandPuppy. In libtpms, SandPuppy triggered a path that detects and mitigates
dictionary attacks against the TPM processor by five successive authorization failures.
In the case of pcapplusplus, SandPuppy triggered parsing of DHCP requests,
which rely on a specific combination of source and destination UDP ports. These
findings show that in addition to improving coverage in general, SandPuppy can
identify and cover multiple deep and complex states.

We did notice changes in variable classification from run to run and verified that
re-classifications were accurate based on variable usage in the source code. Misclas-
sifications have the potential to generate useless inputs, but otherwise do not appear
to degrade performance. We also observed that some misclassified variables were
accurately re-classified as non state-representative, which reduced the generation of
useless inputs in subsequent runs.

Compared to SGFuzz, SandPuppy exceeds coverage performance. The first
reason is SGFuzz’s fragile regex-based static analysis; when used on binutils source
to instrument readelf, SGFuzz crashed due to issues parsing enum definitions
containing comments with braces. When used against libtpms, SGFuzz could iden-

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 15

Table 6: Bugs discovered by each fuzzer in PcapPlusPlus. SandPuppy discovered
10 out of 11 bugs (2 uniquely). LAFIntel, AFL++, RedQueen, and AFL
discovered 9, 6, 4, and 3 bugs respectively. The last column specifies whether the
vulnerable block was covered by other fuzzers.

Bug AFL AFL++ LAFIntel RedQueen SandPuppy Covered by others

Heap overflow #1 ✗ ✗ ✓ ✗ ✓ ✓
Heap overflow #2 ✓ ✓ ✓ ✓ ✓ ✓
Heap overflow #3 ✗ ✓ ✓ ✓ ✗ ✓
Heap overflow #4 ✓ ✓ ✓ ✓ ✓ ✓
Heap overflow #5 ✗ ✓ ✓ ✓ ✓ ✓
Heap overflow #6 ✗ ✓ ✓ ✗ ✓ ✓

Heap overflow #7 ✗ ✗ ✗ ✗ ✓ ✗
Heap overflow #8 ✓ ✓ ✓ ✗ ✓ ✓
Heap overflow #9 ✗ ✗ ✓ ✗ ✓ ✓
Stack overflow #1 ✗ ✗ ✓ ✗ ✓ ✓

Stack overflow #2 ✗ ✗ ✗ ✗ ✓ ✓

tify certain enum definitions. It was not able to detect or instrument any variables,
as their values are set using integer constants instead of enum constants.

SGFuzz also identifies false-positives that are not actually enums and the subse-
quent instrumentation causes a compilation error due to a type-mismatch. While an
ignore-list solves this issue, SGFuzz does not distinguish between identically-named
variables based on usage context.

To fairly evaluate Ferry, we used individual block counts as Ferry uses a
symbolic approach that does not allow providing initial input seeds. SandPuppy
significantly outperforms Ferry. When running against jsoncpp, PcapPlusPlus,
and readelf, Ferry terminated early. In the case of libtpms, Ferry ran out of
memory when given 64 GB.

9.4 Vulnerability Detection

We evaluated SandPuppy’s ability to find vulnerabilities on two real-world targets:
dmg2img and PcapPlusPlus.

We use dmg2img as it was fuzzed in academic research by WEIZZ [16] and
Ijon [3]. SandPuppy identified multiple state-representative variables, including
kolyblk.XMLLength, which was manually identified by Ijon authors. SandPuppy
discovered 7 bugs; 4 were identified by WEIZZ and Ijon, and 2 are known issues (Bug
778819 and CVE-2021-32614). The last (unknown) bug is a one-byte read heap-buffer
overflow in convert char4, which we reported.

PcapPlusPlus is a library for capturing and manipulating network packets, featur-
ing state-representative variables and stateful logic. Here we evaluated SandPuppy
against AFL, AFL++, RedQueen, and LAFIntel, with equivalent fuzzing time and
compute. The results are shown in Table 6: for a total of 11 previously unknown bugs
(which we reported); including 2 stack-overflows and 9 heap-overeads. SandPuppy dis-
covered 10 out of 11 bugs, out of which 2 were not found by other fuzzers. LAFIntel,
AFL++, RedQueen, and AFL discovered 9, 6, 4, and 3 bugs respectively.

Of the two unique bugs, Heap Overflow #7 was triggered the “traditional” way:
SandPuppy’s state awareness triggered additional code. The buggy code containing

16 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

Table 7: Number of distinct command subsequences and total unique sequences
with parameter size found for each feedback-evaluation run in libtpms. Preceding
minus signs describe runs where corresponding feedback was excluded. Perm by itself
outperforms all others and excluding it leads to a dramatic drop in performance.
Sub-seq. Length RVCF Perm Max RVMF -RVCF -Perm -Max -RVMF Random Regular

1 222 41,492 638 260 15,824 623 16,864 18,062 379 12,998
2 277 41,754 756 335 16,381 930 17,230 18,552 497 13,547
3 218 700 166 262 1,237 454 820 1,064 298 978
4 69 669 38 104 702 113 601 654 271 377

Unique Sequences 425 43,073 768 559 17,177 1,013 17,852 19,189 1,170 13,964

Table 8: Coverage (% of basic blocks hit) for each feedback-evaluation run in libpng.
Preceding minus signs describe runs where corresponding feedback was excluded.
Excluding Perm increases performance vs. all other runs. RVMF performs best overall.

RVCF Perm Max RVMF -RVCF -Perm -Max -RVMF Random Regular

Coverage 32.10% 31.80% 31.76% 33.60% 32.99% 34.47% 31.97% 32.15% 31.87% 32.13%

Stack Overflow #2 was executed by all fuzzers, but SandPuppy triggered it with
the correct state by identifying and instrumenting a computed length-variable.

9.5 Feedback Instrumentation Evaluation

The results so far demonstrate that SandPuppy identifies state-representative
variables providing feedback sufficient enough to improve coverage, vulnerability
identification, and state-exploration. However not all instrumented variables and
associated feedback necessarily expose useful state enhancing these metrics. There is
also a risk of fuzzing slowdown due to generating a large number of useless inputs [3].

We designed an experiment to measure the effect of each feedback instrumentation
on coverage and state-exploration. We fuzzed libtpms and libpng for 24 hours with
a single feedback-type enabled/excluded, and with all feedback enabled on a random
subset of variables. We evaluated these against a regular SandPuppy run.

Results in Table 7 show that permutation improves state exploration the most;
excluding it reduces state exploration. In contrast, excluding other feedback types
(RVCF, maximization, and RVMF) increases state diversity.

This trend holds when evaluating individual feedback: Permutation feedback by
itself is almost four times better, while the remaining are not better than random.
This suggests that, based on this particular diversity-metric, other feedback types
do not expose useful state and generate slow inputs.

libpng results are in Table 8. Here, excluding permutation feedback increases
coverage. Variables instrumented include the chunk name and the chunk-header
length. While the feedback it to recognize different combinations of chunk types and
associated lengths, it results in a large number of inputs.

In contrast, RVMF improves coverage both by itself and when included with
maximization feedback and RVCF. In either case coverage is better than when
fuzzing with all feedback types, as some instrumented variable-pairs hold information
related to image or chunk dimensions and sizes. These variables are also involved in a
number of sanity or boundary checks and conditional parsing-logic. Maximizing these

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 17

variables with respect to each other is likely to exercise these paths, resulting in greater
coverage. This is more likely when the fuzzing campaign is not overwhelmed by many
uninteresting inputs, which is observed when we disable the permutation feedback.

Both cases demonstrate that fuzzing with all feedback types generally improves cov-
erage and state exploration, the usefulness depends on the target and evaluation met-
rics. Better performance in future fuzzing runs could be achieved by analyzing the con-
tributions of different feedback types, and including only those that enhance coverage.

10 Discussion, Limitations, and Future Work

We propose an approach that guides fuzzing towards deep states using feedback from
automatically-identified state-representative variables. SandPuppy is used in an
end-to-end, dynamic-feedback approach where test cases discovered after one full
run are used for trace-generation and variable classification, and as initial seeds in
a subsequent run. As coverage generally increases, new test cases have a chance to
exercise new code paths, leading to the discovery of additional state-representative
variables, thus allowing SandPuppy to explore deeper states within a program.

But all instrumented targets are not useful (Section 9.5). An evaluation step could
attempt to optimize how each instrumented target improves coverage and their usage.

In large programs, SandPuppy can identify a large number of state-representative
variables, resulting in a correspondingly large number of targets that need to be built
and fuzzed. FuzzFactory can support up to four coverage maps at a time; this
might allow exposing feedback from multiple variables through a single binary.

During coverage evaluation, we ran SandPuppy for six iterations of 4 hours
each to compare against 24 hour runs of other fuzzers. However it is possible to run
SandPuppy for any number of iterations of any duration. Furthermore, it is also
possible to run SandPuppy for as long as needed, and terminate on other conditions.

As our intent was not to solve the variable semantic-categorization problem in
general, we did not focus on a detailed analysis of false positives and negatives. The
lack of a baseline and ground-truth also hampered this approach. While the results
demonstrate that SandPuppy has practical benefits and improves code coverage,
state coverage, and vulnerability discovery, a detailed analysis of the impacts of false
positive and negatives on performance would be valuable.

11 Related Work

Core fuzzing. Seed selection and scheduling enhancements have increased AFL
performance in different situations [8, 9, 44, 36, 12, 43]. Target information can be used
to improve seed-mutation strategies [4, 2, 6, 19, 30, 34, 26, 24]. Taint tracking improved
efficiency by focusing mutation only on interesting input [10, 35, 27, 28, 17].
Tweaking coverage. Angora, CollAFL, kAFL, and InsTrim enhance coverage-
tracking and feedback by improving recognition of novel coverage [10, 18, 37, 20].
Angora and CollAFL reduce coverage-map collisions, thus helping AFL uniquely
identify more program states. kAFL uses hardware-assisted techniques to improve

18 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

coverage information when fuzzing kernels, while InsTrim uses CFG-aware instru-
mentation to improve execution-path differentiation.
Input-state correspondence. LAFIntel [22] solves the magic-value comparison
issue by splitting compare instructions into multiple smaller ones. Steelix [25] uses
lightweight analysis for comparison progress and identifying locations of magic bytes.

Concolic [39, 49, 45, 21, 13, 11] and symbolic-execution [40, 29, 48, 47] approaches
can handle magic bytes or deeply-nested branches, but struggle to explore com-
plex/deep states relying on a specific sequence of state updates. Symbolic execution can
help solve some of these problems, but scalability is a concern [8] due to state explosion.

RedQueen [4] is an alternative to symbolic/concolic execution and taint tracking,
as it derives input-state correspondence. While SandPuppy also relies on internal
program-state, we expose it to influence feedback instead of correlating with input.
Domain-specific state reasoning. Domain-specific fuzzing [31, 23, 33, 14, 42] has
solved certain deep-state fuzzing problems. PerfFuzz [23] and SlowFuzz guide
the fuzzer towards inputs to expose algorithmic-complexity vulnerabilities, while
MemFuzz [14] augments coverage information by accounting for memory accesses.
General program state reasoning. Ijon uses manual annotations [3] for deep-
state fuzzing. While Ijon overcomes a number of deep-state-fuzzing obstacles and
surpasses prior fully-automated approaches, it requires a human to recognize state-
representative variables that can improve coverage. SandPuppy builds on Ijon by
automating detection and instrumentation of state-representative variables.

InvsCov [15] explores program state-space to improve coverage and detect vulner-
abilities using runtime dynamic-analysis of program variables, similar to SandPuppy.
But the focus is on identifying invariants and augmenting coverage feedback with this
information, to partition program state-space and guide the fuzzer towards states
violating these invariants, potentially triggering vulnerabilities.

SGFuzz [5] explores state-spaces using regex-based static analysis to identify
enums in protocol parsers. SGFuzz also maintains a global variable-ignore-list of
unqualified variable names. SandPuppy focuses on additional variable categories
making it applicable to more program types. We also identify variables based on their
semantics rather than syntax, allowing us to detect those that behave like enums.

Ferry [50] also explored identification of state-representative variables, categoriz-
ing them based on certain characteristics (different from SandPuppy). Rather than
exploring the triggering of other program states, Ferry exclusively uses information
from these variables to explore dependent branches. Based on our evaluation results,
we saw that SandPuppy significantly outperforms Ferry.

12 Conclusion

SandPuppy is a fully-automated source-code based fuzzing approach that explores
deep-states in programs by identifying and labeling state-representative integer vari-
ables using runtime value-traces, and instrumenting them to provide appropriate
feedback based on their semantics. SandPuppy effectively automates Ijon, re-
quires no knowledge or manipulation of program source, and results in performance
that either matches, or in certain cases slightly outperforms Ijon. We believe that
SandPuppy represents the first step toward fully-automated deep-state fuzzing.

SandPuppy: Deep-state Fuzzing Guided by State-Representative Variables 19

Acknowledgements

This research project has received funding from the following sources: Defense Ad-
vanced Research Projects Agency (DARPA) Contracts No. FA875019C0003 and
N6600122C4026; the Advanced Research Projects Agency for Health (ARPA-H) Grant
No. SP4701-23-C-0074; the Department of the Interior Grant No. D22AP00145-00;
and National Science Foundation (NSF) Awards No. 1663651, 2146568, 2232915, and
2247954. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the Government, and no official endorsement should be inferred.

References

1. Libfuzzer – a library for coverage-guided fuzz testing., https://llvm.org/docs/LibFuzzer.html,
accessed October 26, 2021

2. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.R., Teuchert, D.: Nautilus: Fishing
for deep bugs with grammars. In: NDSS (2019)

3. Aschermann, C., Schumilo, S., Abbasi, A., Holz, T.: Ijon: Exploring deep state spaces via fuzzing.
In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1597–1612. IEEE (2020)

4. Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: REDQUEEN: Fuzzing with
input-to-state correspondence. In: NDSS. vol. 19, pp. 1–15 (2019)

5. Ba, J., Böhme, M., Mirzamomen, Z., Roychoudhury, A.: Stateful greybox fuzzing. In: 31st USENIX
Security Symposium (USENIX Security 22). pp. 3255–3272 (2022)

6. Blazytko, T., Bishop, M., Aschermann, C., Cappos, J., Schlögel, M., Korshun, N., Abbasi, A.,
Schweighauser, M., Schinzel, S., Schumilo, S., et al.: GRIMOIRE: Synthesizing structure while
fuzzing. In: 28th USENIX Security Symposium (USENIX Security 19). pp. 1985–2002 (2019)

7. Böhme, M.: Aflfast, https://github.com/mboehme/aflfast, accessed October 26, 2021
8. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox fuzzing. In: Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp. 2329–2344 (2017)
9. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as markov chain. IEEE

Transactions on Software Engineering 45(5), 489–506 (2017)
10. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: 2018 IEEE Symposium on

Security and Privacy (SP). pp. 711–725. IEEE (2018)
11. Chen, P., Liu, J., Chen, H.: Matryoshka: fuzzing deeply nested branches. In: Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security. pp. 499–513 (2019)
12. Chen, Y., Ahmadi, M., Wang, B., Lu, L., et al.: MEUZZ: Smart seed scheduling for hybrid fuzzing.

In: 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020).
pp. 77–92 (2020)

13. Chen, Y., Li, P., Xu, J., Guo, S., Zhou, R., Zhang, Y., Wei, T., Lu, L.: Savior: Towards bug-driven
hybrid testing. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1580–1596. IEEE (2020)

14. Coppik, N., Schwahn, O., Suri, N.: Memfuzz: Using memory accesses to guide fuzzing. In: 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST). pp. 48–58. IEEE (2019)

15. Fioraldi, A., D’Elia, D.C., Balzarotti, D.: The use of likely invariants as feedback for fuzzers. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 2829–2846 (2021)

16. Fioraldi, A., D’Elia, D.C., Coppa, E.: Weizz: Automatic grey-box fuzzing for structured binary
formats. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. pp. 1–13 (2020)

17. Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., Chen, Z.: GREYONE: Data flow sensitive
fuzzing. In: 29th USENIX Security Symposium (USENIX Security 20). pp. 2577–2594 (2020)

18. Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z.: Collafl: Path sensitive fuzzing. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 679–696. IEEE (2018)

19. Han, H., Oh, D., Cha, S.K.: Codealchemist: Semantics-aware code generation to find vulnerabilities
in javascript engines. In: NDSS (2019)

20. Hsu, C.C., Wu, C.Y., Hsiao, H.C., Huang, S.K.: Instrim: Lightweight instrumentation for coverage-
guided fuzzing. In: Symposium on Network and Distributed System Security (NDSS), Workshop
on Binary Analysis Research (2018)

21. Huang, H., Yao, P., Wu, R., Shi, Q., Zhang, C.: Pangolin: Incremental hybrid fuzzing with polyhedral
path abstraction. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1613–1627. IEEE (2020)

22. Lafintel: Lafintel (Aug 2016), https://lafintel.wordpress.com/
23. Lemieux, C., Padhye, R., Sen, K., Song, D.: Perffuzz: Automatically generating pathological inputs.

In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 254–265 (2018)

20 Paliath, Trickel, Bao, Wang, Doupé, and Shoshitaishvili

24. Lemieux, C., Sen, K.: Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing
coverage. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. pp. 475–485 (2018)

25. Li, Y., Chen, B., Chandramohan, M., Lin, S.W., Liu, Y., Tiu, A.: Steelix: program-state based binary
fuzzing. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
pp. 627–637 (2017)

26. Lyu, C., Ji, S., Li, Y., Zhou, J., Chen, J., Chen, J.: Smartseed: Smart seed generation for efficient
fuzzing. arXiv preprint arXiv:1807.02606 (2018)

27. Mathis, B., Gopinath, R., Mera, M., Kampmann, A., Höschele, M., Zeller, A.: Parser-directed fuzzing.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 548–560 (2019)

28. Mathis, B., Gopinath, R., Zeller, A.: Learning input tokens for effective fuzzing. In: Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis. pp. 27–37 (2020)

29. Ognawala, S., Hutzelmann, T., Psallida, E., Pretschner, A.: Improving function coverage with munch:
a hybrid fuzzing and directed symbolic execution approach. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. pp. 1475–1482 (2018)

30. Padhye, R., Lemieux, C., Sen, K., Papadakis, M., Le Traon, Y.: Validity fuzzing and parametric
generators for effective random testing. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). pp. 266–267. IEEE (2019)

31. Padhye, R., Lemieux, C., Sen, K., Simon, L., Vijayakumar, H.: Fuzzfactory: domain-specific fuzzing
with waypoints. Proceedings of the ACM on Programming Languages 3(OOPSLA), 1–29 (2019)

32. Peng, H., Shoshitaishvili, Y., Payer, M.: T-fuzz: fuzzing by program transformation. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 697–710. IEEE (2018)

33. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-independent detection
of algorithmic complexity vulnerabilities. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2155–2168 (2017)

34. Pham, V.T., Böhme, M., Santosa, A.E., Căciulescu, A.R., Roychoudhury, A.: Smart greybox fuzzing.
IEEE Transactions on Software Engineering 47(9), 1980–1997 (2019)

35. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer: Application-aware
evolutionary fuzzing. In: NDSS. vol. 17, pp. 1–14 (2017)

36. Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley, D.: Optimizing seed
selection for fuzzing. In: 23rd USENIX Security Symposium (USENIX Security 14). pp. 861–875 (2014)

37. Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T.: kAFL: Hardware-assisted feedback
fuzzing for OS kernels. In: 26th USENIX Security Symposium (USENIX Security 17). pp. 167–182
(2017)

38. Shoshitaishvili, Y., Weissbacher, M., Dresel, L., Salls, C., Wang, R., Kruegel, C., Vigna, G.: Rise of the
hacrs: Augmenting autonomous cyber reasoning systems with human assistance. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp. 347–362 (2017)

39. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y., Kruegel,
C., Vigna, G.: Driller: Augmenting fuzzing through selective symbolic execution. In: NDSS. vol. 16,
pp. 1–16 (2016)

40. Wang, M., Liang, J., Chen, Y., Jiang, Y., Jiao, X., Liu, H., Zhao, X., Sun, J.: Safl: increasing and
accelerating testing coverage with symbolic execution and guided fuzzing. In: Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings. pp. 61–64 (2018)

41. Wang, Y., Jia, X., Liu, Y., Zeng, K., Bao, T., Wu, D., Su, P.: Not All Coverage Measurements Are
Equal: Fuzzing by Coverage Accounting for Input Prioritization. In: Network and Distributed System
Security Symposium (2020). https://doi.org/10.14722/ndss.2020.24422

42. Wang, Y., Jia, X., Liu, Y., Zeng, K., Bao, T., Wu, D., Su, P.: Not all coverage measurements are
equal: Fuzzing by coverage accounting for input prioritization. In: NDSS (2020)

43. Wang, Y., Wu, Z., Wei, Q., Wang, Q.: Neufuzz: Efficient fuzzing with deep neural network. IEEE
Access 7, 36340–36352 (2019)

44. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational fuzzing. In: Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security. pp. 511–522 (2013)

45. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: A practical concolic execution engine tailored for
hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX Security 18). pp. 745–761 (2018)

46. Zalewski, M.: American fuzzy lop (2.52b), https://lcamtuf.coredump.cx/afl/, accessed October 26,
2021

47. Zhang, B., Ye, J., Feng, C., Tang, C.: S2f: discover hard-to-reach vulnerabilities by semi-symbolic
fuzz testing. In: 2017 13th International Conference on Computational Intelligence and Security (CIS).
pp. 548–552. IEEE (2017)

48. Zhang, L., Thing, V.L.: A hybrid symbolic execution assisted fuzzing method. In: TENCON 2017-2017
IEEE Region 10 Conference. pp. 822–825. IEEE (2017)

49. Zhao, L., Duan, Y., Yin, H., Xuan, J.: Send hardest problems my way: Probabilistic path prioritization
for hybrid fuzzing. In: NDSS (2019)

50. Zhou, S., Yang, Z., Qiao, D., Liu, P., Yang, M., Wang, Z., Wu, C.: Ferry: State-aware symbolic
execution for exploring state-dependent program paths pp. 4365–4382 (2022)

