

GSWC 2011

Proceedings of

The Sixth Annual Graduate

Student Workshop on Computing

October 7
th

, 2011

Santa Barbara, California

Department of Computer Science

University of California, Santa Barbara

http://www.cs.ucsb.edu

Organized By

Lara Deek, Chair

Steffen Gauglitz, Vice-Chair

Adam Doupé, Industry Liaison

Ludovico Cavedon, Financial Coordinator

Nichole Stockman, Proceedings Coordinator

Bryce Boe, Web Coordinator

Gianluca Stringhini, General Committee

Nan Li, General Committee

Petko Bogdanov, General Committee

Maria Zheleva, General Committee

Ceren Budak, General Committee

Shiyuan Wang, General Committee

Vineeth Kashyap, General Committee

Hassan Wassel, General Committee

Aaron Elmore, General Committee

Sudipto Das, General Committee

Arijit Khan, General Committee

Wim van Dam, Faculty Adviser

Thanks to

Platinum Supporters

Nickel Supporters

Keynote Speakers

Roberto Manduchi, Associate Professor, UCSC

Roberto Manduchi obtained his "Dottorato di Ricerca" in Electrical
Engineering from the University of Padova, Italy, in 1993. After a few years
roaming around Northern and Southern California in various postdoctoral
positions, he landed a job at Apple in the Interactive Media Group. From
1998 to 2001 he was with the Machine Vision Group at the Jet Propulsion
Laboratory. In 2001 he joined the faculty at the University of California,
Santa Cruz, where he is currently an Associate Professor of Computer
Engineering. Roberto's main research interest is in the application of
computer vision and sensor processing to assistive technology for people
with visual impairment. His research is supported by the NSF and the NIH.

Zoran Dimitrijevic, Software Engineer, Google

Zoran Dimitrijevic has been with Google as a Software Engineer since
2004. While at Google he has been working on Google File System, video
streaming, search infrastructure, News Archives, and News. Prior to joining
Google, he graduated with a Ph.D. degree in Computer Science from the
University of California, Santa Barbara in 2004 and with a Dipl.Ing. degree
from the School of Electrical Engineering, University of Belgrade, Serbia in
1999.

Discussion Panel

Andrew Mutz, Director of Software Engineering,

AppFolio

Dr. Andrew Mutz is the Director of Software Engineering at AppFolio, Inc.
AppFolio is the fastest growing provider of online residential property
management software. Prior to joining AppFolio, he completed his Ph.D. in
Computer Science from the University of California, Santa Barbara. His
dissertation, "Eliciting Honest Behavior on Computational Grids," focused
on the problem of maximizing the amount of useful work accomplished on
a computational cluster by incentivizing accurate revelation from users of
the value of the work being performed. Prior to graduate school, he worked
as a Software Engineer at ExpertCity, inc. (now Citrix Online). He received
his B.S. in Computer Science in the College of Creative Studies at UCSB.

Chad Sweet, Software Engineering Manager, Qualcomm

Chad Sweet is a Principal Software Engineering Manager at Qualcomm in
the Corporate R&D division. He has led their augmented reality software
research and development for the past three and a half years. He has
more than a dozen patents pending in the wireless communications and
augmented reality fields. Chad has a Bachelor's in Computer Engineering
from Vanderbilt University and has been with Qualcomm for more than 13
years.

Saty Bahadur, Principle Developer Manager,

Windows Phone Team, Microsoft

Saty is the Principle Developer Manager for the Windows Phone Team. As
a member of the Windows Phone CX Engineering group, he works on
developing software that enables more mobile operators, geographies, and
variants, and adds end-user value. Previously, he was a Principal
Development Manager in the Windows Devices and Networking Team,
and, prior to that, he worked at Intel Corporation in various leadership roles
for 12 years. Saty received his M.S. in Computer Science from Clemson
University and his B.E. in (Hons) Instrumentation from BITS, Pilani, India.

Table of Contents

Security Session (led by Gianluca Stringhini)

• Fear the EAR: Automated Discovery of Execution after
Redirection Vulnerabilities 1
Adam Doupé, Bryce Boe, Christopher Kruegel, Giovanni Vigna

• BareBox: Efficient Malware Analysis on Bare-Metal 3
Dhilung Kirat, Giovanni Vigna, Christopher Kruegel

• New Hardware Description Language for Secure Information
Flow 5
Xun Li, Mohit Tiwari, Jason Oberg, Vineeth Kashyap, Ben Hardekopf,
Timothy Sherwood, Frederic Chong

Networking and Architecture Session (led by Maria Zheleva)

• The Implications of MIMO and Channel Bonding on Channel
Management in 802.11n 7
Lara Deek, Elizabeth Belding, Kevin Almeroth

• VillageCell: Cellular Connectivity in Rural Areas 9
Abhinav Anand, Veljko Pejovic, Elizabeth Belding

• Barely Alive Memory Servers: Keeping Data Active in a Low
Power State 11
Vlasia Anagnostopoulou, Ricardo Bianchini, Tao Yang, Frederic T. Chong

• Ranking Security-Important Assets in Corporate Networks 13
Ali Zand, Christopher Kruegel, Richard Kemmerer, and Giovanni Vigna

Multifarious Session A (led by Steffen Gauglitz)

• Complete Information Pursuit Evasion in Polygonal
Environments 15
Kyle Klein, Subhash Suri

• Temporal Cross-Sell Optimization Using Action Proxy-Driven
Reinforcement Learning 17
Nan Li, Naoki Abe

• A Flexible Open-Source Toolbox for Scalable Complex Graph
Analysis 19
Adam Lugowski, David Alber, Aydin Buluc, John R. Gilbert, Steve Reinhardt,
Yun Teng, Andrew Waranis

Multifarious Session B (led by Nichole Stockman)

• Melody Matcher: A Music-Linguistic Approach to Analyzing
the Intelligibility of Song Lyrics 21
Jennifer Jenee G. Hughes

• The Composition Context in Point-and-Shoot Photography 23
Daniel Vaquero, Matthew Turk

• iSketchVis: Integrating Sketch-based Interaction with
Computer Supported Data Analysis 25
Jeffrey Browne, Bongshin Lee, Sheelagh Carpendale, Timothy Sherwood,
Nathalie Riche

Posters

• Reliable Selection of Interest Points for Keypoint Matching 27
Victor Fragoso, Matthew Turk

• A Botmasters Perspective of Coordinating Large-Scale Spam
Campaigns 29
Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, Giovanni Vigna

• Back to the Future: Replaying Malicious Web-pages for
Regression Testing 31
Yan Shoshitaishvili, Alexandros Kapravelos, Christopher Kruegel,
Giovanni Vigna

• Generating Applications for the Cloud from Formal
Specifications 33
Christopher Coakley, Peter Cappello

• EvilSeed : A Guided Approach to Finding Malicious Web
Pages 35
Luca Invernizzi, Marco Cova, Christopher Kruegel

• The Phantom Anonymity Protocol 37
Johannes Schlumberger, Magnus Brading, Amir Houmansadr

• A Framework for Modeling Trust in Collaborative Ontologies 39
Byungkyu Kang, John ODonovan, Tobias Hollerer

• SIGMA: A Statistical Interface for Graph Manipulation and
Analysis 41
Greg Meyer, Brynjar Gretarsson, Svetlin Bostandjiev, John ODonovan,
Tobias Hollerer

• Detecting Service Outages via Social Media Analysis 43
Eriq Augustine, Cailin Cushing, Kim Paterson, Matt Tognetti, Alex Dekhtyar

• Chronology-Sensitive Hierarchical Clustering of Pyrosequenced
DNA Samples of E.Coli 45
Aldrin Montana, Alex Dekhtyar, Emily Neal, Michael Black, Chris Kitts

• Closest Pair and the Post Office Problem for Stochastic Points 47
Pegah Kamousi, Timothy Chan, Subhash Suri

Fear the EAR: Automated Discovery of Execution
After Redirect Vulnerabilities

Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{adoupe, bboe, chris, vigna}@cs.ucsb.edu

Abstract—The complexity of modern web applications makes
it difficult for developers to fully understand the security impli-
cations of their code. The resulting security vulnerabilities are
exploited by attackers to gain unauthorized access to the web
application environment. Previous research into web application
vulnerabilities has mostly focused on input validation flaws, such
as cross-site scripting and SQL injection, while logic flaws have
received comparably less attention.

In this paper, we present a comprehensive study of a relatively
unknown logic flaw in web applications, which we call Execution
After Redirect, or EAR. A web application developer can intro-
duce an EAR by calling a redirect method under the assumption
that execution will halt. A vulnerability occurs when server-side
execution continues after the developer’s intended halting point,
which can lead to broken/insufficient access controls and possibly
information leakage.

We present an open-source, white-box, static analysis tool to
detect EARs in Ruby on Rails web applications, which found
3,944 EAR instances in 18,127 open-source applications.

I. INTRODUCTION

An increasing number of services are being offered on-line.
For example, banking, shopping, socializing, reading the news,
and enjoying entertainment are all available on the web. The
increasing amount of sensitive data stored by web applications
has attracted the attention of cyber-criminals, who break into
systems to steal valuable information.

In this paper, we present an in-depth study of a little-known
web application logic flaw; one we are calling Execution After
Redirect (EAR). An EAR occurs because of a developer’s
misunderstanding of how the web application framework op-
erates. In the normal workflow of a web application, a user
sends a request to the web application. The web application
receives this request, performs some server-side processing,
and returns an HTTP response. Part of the HTTP response
can be a notification that the client (a web browser) should
look elsewhere for the requested resource. In this case, the web
application sets the HTTP response code to indicate a redirect,
and adds a Location header. The response code instructs
the browser to look for the resource originally requested at
a new URL specified by the web application in the HTTP
Location header. This process is known as redirection; the
web application redirects the user to another resource.

An EAR can be introduced when a web application devel-
oper writes code that issues an HTTP redirect under the as-
sumption that the redirect will automatically halt execution of
the web application. Depending on the framework, execution

1 class TopicsController < ApplicationController
2 def update
3 @topic = Topic.find(params[:id])
4 if not current_user.is_admin?
5 redirect_to("/")
6 end
7 @topic.update_attributes(params[:topic])
8 end
9 end

Listing 1: Example of an EAR vulnerability in Ruby on
Rails

can continue after the call to the redirect function, potentially
violating the security of the web application.

We present a study of Execution After Redirect vulnera-
bilities: we provide a brief overview of EARs and develop
a novel static analysis algorithm to detect EARs, which we
implemented in an open-source tool to analyze Ruby on Rails
web applications. We then present the results of running our
tool on 18,127 open-source Ruby on Rails applications, which
found 3,944 EARs.

II. OVERVIEW OF EARS

An Execution After Redirect is a logic flaw in web applica-
tions due to a developer’s misunderstanding of the semantics
of redirection. Very often this misunderstanding is caused
by the web framework used by the developer. In particular,
developers assume that the web application will halt after
performing a redirect. Certain web frameworks, however, do
not halt execution on a redirect, and instead, execute all the
code that follows the redirect operation.

As an example, consider an EAR bug adapted from a
real vulnerability shown in Listing 1. The code appears to
redirect the current user to “/” if she is not an administrator
(Line 5), and if she is an administrator, @topic will be
updated with the parameters sent by the user (Line 7). The
code does not execute in this way, because Ruby on Rails
does not halt execution on a redirect. Thus, any user, not
only the administrator, can modify the topic, violating the
intended authorization and compromising the security of the
web application.

Execution After Redirect logic flaws can be of two types:
benign or vulnerable. A benign EAR is one in which no
security properties of the application are violated, even though
additional, unintended, code is executed after a redirect. A
vulnerable EAR occurs when the code executed after the

1

Type of EAR reported Number reported
Benign 3,089
Vulnerable 855
Total 3,944
Total Projects 18,127
Any EAR 1,173
Only Benign 830
At least one vulnerable EAR 343

TABLE I: Results of running the white-box detector against
Ruby on Rails applications, 6.5% of which contained an EAR
flaw. 2.9% of the projects had an EAR classified as vulnerable.

redirect violates the security properties of the web application.
More specifically, in a vulnerable EAR the code executed
after the redirection allows unauthorized modification to the
state of the web application (typically the database), and/or
causes leakage (reads and returns to the browser) of data to
an unauthorized user.

We analyzed nine web frameworks to see how they differed
with respect to the built-in redirect functions. Of those frame-
works we examined, we found the following to be vulnerable
to Execution After Redirect vulnerabilities: Ruby on Rails,
Grails, PHP, J2EE, and Struts. Even though our detection is
focused on Ruby on Rails, EARs are a widespread problem
that can affect many different languages and frameworks.

III. EAR DETECTION

Our white-box tool uses static source code analysis to
identify Execution After Redirect bugs in Ruby on Rails
web applications. Here we will give a brief overview of our
algorithm.

The goal of our EAR detector is to find a path in the
application’s Control Flow Graph (CFG) that contains both
a call to a redirect method and code following that redirect
method. The algorithm operates in five steps: (i) generate a
CFG of the application; (ii) find all redirection methods; (iii)
prune infeasible paths in the CFG to reduce false positives;
(iv) detect EARs by finding a path in the CFG where code is
executed after a redirect method is called; (v) use a heuristic
to differentiate between benign and vulnerable EARs.

IV. RESULTS

We used our EAR detection tool to find real-world EARs
in open-source Ruby on Rails web applications. We identified
18,127 Ruby on Rails applications from GitHub that served
as our testbed.

Table I summarizes the results. In total, we found 3,944
EAR instances in 1,173 projects. 855 of these EARs, present
in 343 projects, were classified as vulnerable. This means that
6.5% of Rails applications we tested contained at least one
EAR, and 29.3% of the applications containing EARs had an
EAR classified as vulnerable.

A. Detection Effectiveness

To determine the effectiveness of our tool, we manually
inspected all 855 vulnerable EARs. The results are shown in
Table II. We verified that 485, or 59.9%, were true positives.

Classification after manual analysis Number
True Vulnerable EARs 485
Benign EARs 325
No EARs (False Positives) 45

TABLE II: Results of manually inspecting the 855 vulnerable
EARs reported by our white-box tool. 40.1% were benign, and
5.3% were not EARs.

Many of these were caused by ad-hoc authorization checks,
where the developer issued a redirect when the authorization
check failed, assuming that execution would halt. Some exam-
ples of security violations were allowing non-administrators
access to administrator functionality, allowing modifications
to items not belonging to the current user, and being able to
sign up for a conference even though it was full.

For vulnerable EARs, we consider two different types of
false positives: false vulnerable EARs, which are benign EARs
mistakenly reported as vulnerable, and false EARs (false
positives). As shown in Table II, our tool generated 45 false
EARs, for a false positive rate of 5.3%. These were mostly
due to impossible paths from the redirect methods to code that
the tool was not able to statically determine. Our vulnerable
EAR heuristic had a higher false detection rate of 40.1%. Once
again the major reason for this high rate was that there was no
feasible path from the redirect to the method that changed the
state of the database. Even though this rate is high, it is well in
line with the precision of previous static analysis tools [1]–[3].

We checked that the false EAR rate did not differ signif-
icantly among the benign EARs by manually inspecting 200
random benign EARs. We saw 13 false EARs in the manual
inspection, for a false positive rate of 6.5%. We also did not see
any vulnerable EARs among the benign EARs, thus, we did
not see any false negative vulnerable EARs in our experiments.

From our results, we can conclude that we detect EARs
well, however, it is difficult to distinguish between benign and
vulnerable EARs. However, even though certain EARs might
not be currently vulnerable, they are still programming errors
that should be fixed.

V. CONCLUSION

We have described a new type of vulnerability, Execution
After Redirect, and developed a novel static analysis tool to
effectively find EARs. We showed that EARs are difficult to
classify as vulnerable. This difficulty is due to vulnerable
EARs violating the specific logic of the web application.
Better understanding of the application’s logic should help
differentiate vulnerable and benign EARs and it will be the
focus of future work.

REFERENCES

[1] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-T., AND KUO,
S.-Y. Securing web application code by static analysis and runtime
protection. In Proceedings of the 13th international conference on World
Wide Web (New York, NY, USA, 2004), WWW ’04, ACM, pp. 40–52.

[2] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A static analysis
tool for detecting web application vulnerabilities (short paper). In IN 2006
IEEE SYMPOSIUM ON SECURITY AND PRIVACY (2006), pp. 258–263.

[3] LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabilities
in java applications with static analysis. In Proceedings of the 14th
conference on USENIX Security Symposium - Volume 14 (Berkeley, CA,
USA, 2005), USENIX Association, pp. 18–18.

2

BareBox: Efficient Malware Analysis on Bare-Metal
Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel

Computer Security Lab
University of California, Santa Barbara
{dhilung,vigna,chris}@cs.ucsb.edu

Abstract—Present day malware analysis techniques use both
virtualized and emulated environments which can be detected by
modern malware to hide their malicious behavior. Such malware
need to be analyzed in a bare-metal environment. However,
with available bare-metal analysis framework, restoration of
the analysis environment into the previous clean-state requires
a system reboot, which largely limits the overall throughput.
This paper presents a bare-metal analysis framework based on
a novel technique of reboot-less system restoration, for executing
and monitoring malware run in a native hardware environment.
Live system restore is accomplished by restoring the entire
physical memory of the analysis operating system from another,
custom written operating system, that runs outside of the analysis
operating system.

I. INTRODUCTION

Present day malware analysis techniques use both virtual-
ized and emulated environments to analyze malware. However,
a class of malware called VM-aware malware are capable of
detecting such environments and then hiding its malicious be-
havior to foil the analysis. More transparent malware analyzers
such as hardware-virtualization-based Ether [1] and system-
emulation-based Anubis [2] have been proposed. However, it
has been demonstrated that in-guest detection of these systems
are possible [3], [4].

The definitive way to observe the actual behavior of VM-
aware malware is to execute them in a “bare-metal” system, a
system running on real hardware. After each analysis, such
system must be restored back to the previous clean state.
Available state-of-the-art system restore solutions are disk-
restore based and require a system reboot. Because of this
significant downtime between each analysis, efficient automa-
tion of malware analysis in bare-metal systems has been a
challenge.

Our primary goal is to develop a bare-metal framework
for analyzing malware that does not rely on virtualization
or emulation techniques, such that all of the VM detection
techniques used by malware are rendered ineffective. To
increase the throughput of the entire analysis framework, we
also want to restore the environment as fast as possible, to the
point where the next analysis can be initiated.

In this paper, we propose a bare-metal analysis framework
based on a novel technique that allows reboot-less system
restoring. This framework, called BareBox, executes and mon-
itors malware run in a native environment. After the analysis
run has been completed, the running OS is restored back to
the previously-saved clean state on-the-fly, within few seconds.
This restoration process recovers not only the underlying disk

state but also the volatile state of the entire operating system
(running processes, memory cache, filesystem cache, etc).

II. SYSTEM OVERVIEW

The system consists of a overlay-based volatile mirror disk,
a symmetric physical memory partition, and a small custom-
written operating system, which we call Meta-OS. Live state
of the running operating system is restored from this Meta-
OS by restoring the entire physical memory of the operating
system, once a malware analysis run completes. Software-
based overlay mechanism selectively redirects sector read and
write operations to either the main disk or the mirror disk.

Flash

BIOS
MMIOSnapshot Memory

Meta

OS

M

M

I

O

Target

OS
Target OS

Top of the Available

Physical Memory0 GB 4 GB

Fig. 1. Physical memory partition

As shown in Figure 1, the physical memory is partitioned in
such a way that one of the partitions can be used as a snapshot
area. Target OS runs in the other partition, where the actual
malware is executed.

Complete restore of a live operating system involves the
overwriting of the critical OS structures residing in the phys-
ical memory (e.g., the page table, interrupt handlers, etc.)
which interfere with the execution of the restoring code itself.
It also requires the restoring of the CPU context including
system-critical registers (e.g., IDTR, GDTR and other control
registers), which are heavily coupled with the content of the
physical memory. Because of these circular dependencies, the
restoration process can only be performed from an out-of-
OS execution. Meta-OS, that resides outside of the physical
memory of the target OS, provides this requirement to create a
physical memory snapshot of the target OS and to later restore
it. While the CPU is in protected mode, an OS context switch
to the restored OS is particularly challenging because the CPU
needs to switch into an arbitrary hardware page table. This is
made possible by the careful relocation of the GDT before the
context switch and the implementation of segmented-address-
space in the Meta-OS.

BareBox also needs to restore the device states of the
attached devices. However, the exact definition of “device
state” is device-specific. Instead, we manipulated the “device

3

power state”, which in turn forces a reset of the internal device
state.

Malware monitoring component hooks System Service De-
scriptor Table (SSDT) to record the system calls generated
by the malware. New driver loading and known SSDT hook
detection techniques are prevented during the analysis, to
protect the integrity of the monitoring component. However,
this limits the analysis to usermode malware.

III. EVALUATION

A. Performance

We compared the performance of BareBox with different
system restore options available. As the system restore time
of the BareBox was largely dominated by device-state restore,
we achieved increased efficiency by implementing selective
device restore.

8.4

1.6
1

5
5.8

3.4

15.7

8.8

4.3

1.1

12

16.6

4.1

5.7

0

2

4

6

8

10

12

14

16

18

BareBox (All

Devices)

BareBox

(Minimum

Devices)

BareBox

(Memory

Only)

Soft boot with

SSD Drive

Soft boot

(Commodity)

VitualBox

snapshot

VMWare

snapshot

T
im

e
re

q
u

ir
ed

 t
o
 s

a
v
e/

re
st

o
re

 (
se

c)

System Restore Techniques

Save Restore

Fig. 2. Evaluation of different system restore techniques.

Looking at the results, we can see that the performance of
BareBox is comparable to fast, virtual-machine-based solu-
tions.

B. Dynamic Malware Analysis

We collected six malware samples per family for seven dif-
ferent families from the Anubis [2] database that are known to
detect virtualization and emulation environments. We executed
them inside a virtualized environment (VMware), an emulated
environment (QEMU), and in the BareBox and compared their
network related system call traces.

The result in Table I clearly shows the increased number of
network activities in our BareBox environment. In addition,
we also monitored the number of new processes created by
the malware samples in each environment. BareBox was able
to elicit more process-related activity across the board.

To evaluate the overall efficiency of the system, we allowed
each sample to load and execute for 15 seconds and then the
system was automatically restored back for the next analysis

TABLE I
INTERACTIONS WITH THE NETWORK

Malware Family BareBox VMware QEMU
Rebhip 346 10 55
Telock 205 107 34
Confickr 24 0 0
Zlob/Zeus 408 406 176
Sdbot 152 45 30
Agobot 50 48 3
Armadillo-4 172 82 58

run. With only about four seconds overhead for the system
restore, we could analyze three malware samples per minute.

IV. CONCLUSION

In this paper, we presented BareBox, a framework for
dynamic malware analysis in a bare-metal environment. To
facilitate efficient analysis, we introduced a novel technique
for reboot-less system restore. Since the system executes
malware on real hardware, it is not vulnerable to any type
of VM/emulation-based detection attacks. We evaluated the
effectiveness of the system by successfully monitoring the true
malicious behavior of VM/emulation-aware malware samples
that did not show malicious behavior in emulated or virtualized
environments. After each such analysis, our system was able
to efficiently restore the bare-metal system so that the next
analysis could be initiated.

REFERENCES

[1] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in CCS ’08, 2008.

[2] “Anubis: Analyzing unknown binaries.” [Online]. Available:
http://anubis.iseclab.org/

[3] G. Pék, B. Bencsáth, and L. Buttyán, “nether: in-guest detection of out-
of-the-guest malware analyzers,” in EUROSEC ’11, 2011.

[4] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “A fistful
of red-pills: How to automatically generate procedures to detect CPU
emulators,” in 3rd USENIX (WOOT). Montreal, Canada: ACM.

4

New Hardware Description Language for Secure
Information Flow

Xun Li Mohit Tiwari Jason K. Oberg∗ Vineeth Kashyap
Ben Hardekopf Timothy Sherwood Frederic T. Chong

Department of Computer Science ∗Department of Computer Science and Engineering
University of California, Santa Barbara University of California, San Diego

{xun,tiwari,vineeth,chong,sherwood,benh}@cs.ucsb.edu jkoberg@cs.ucsd.edu

Abstract—Information flow is an important security property
that must be incorporated from the ground up, including at
hardware design time, to provide a formal basis for a system’s
root of trust. We incorporate insights and techniques from
designing secure programming languages to provide a new
perspective on designing secure hardware—i.e., a new hardware
description language, Caisson, that combines domain-specific
abstractions common to hardware design with insights from type-
based techniques used in secure programming languages.

I. MOTIVATION

High-assurance embedded systems such as those used in
banks, aircraft and cryptographic devices all demand strong
guarantees on information flow. Policies may target confiden-
tiality, so that secret information never leaks to unclassified
outputs, or they may target integrity, so that untrusted data
can never affect critical system data. The high cost of a policy
violation ensures that these systems are evaluated extensively
before being deployed.

Information flow policies are expressed using a lattice of
security levels [3] such that higher elements in the lattice
correspond to information with more restricted flow (i.e.,
secret information for confidentiality or untrusted information
for integrity). A simple example of a security lattice would
be the typical military classification levels: Unclassified
⊑ Secret Top Secret. An important information flow
policy based on such lattices is non-interference [4], which
requires that no information at a given level in the lattice can
flow anywhere except to higher elements in the lattice (e.g.,
Secret information can flow to Top Secret, but not vice-
versa). High-assurance systems require a static guarantee of
non-interference and depend on a hardware-based root of trust
to enforce this policy.

Existing approaches try to enforce information flow security
policies at different levels in the computer systems, from
application and programming languages to operating system.
However even with expensive overhead, none of existing
approaches are able to provide full system security guarantees.
Numerous attacks exploit hardware structures such as shared
data caches [5], instruction caches [2], and branch predic-
tors [1] to leak information about private keys. Complete infor-
mation flow security must begin with a principled approach to
designing hardware that accounts for the intricate interaction
among different hardware components, analyzes the hardware

design in its entirety, and does so efficiently enough to be
useful in practice.

In contrast to existing approaches, we take language-level
techniques for secure information flow and apply them to
domain-specific abstractions for hardware design (specifically,
finite state machines) to create a new Hardware Description
Language (HDL). Our goal is to enable the creation of
synchronous hardware designs that are statically-verifiable as
secure. Additional benefits of new HDLs are that it allows
hardware designers to operate at familiar level of abstrac-
tion, enables architects to quickly and easily iterate through
potential designs without having to wait for synthesis and
simulation to test security properties, and the resulting designs
do not suffer from the crippling overhead that comes with
dynamic tracking in terms of additional chip area and power
consumption.

In this abstract, we present our first work towards this line
of research, i.e. a hardware description language for designing
information flow secure hardware named Caisson [7]. We have
designed simple provably secure processors using Caisson
and show the overhead is much smaller compared to existing
approaches. We also point out the limitations of Caisson and
discuss future work.

II. CAISSON: SECURE STATE-MACHINE-AWARE HDL

Finite-state representations of hardware control systems are
popular in hardware design. Existing tools such as Altera
Quartus, Xilinx ISE, Statecharts, and Esterel are widely used
to model systems explicitly as state machines. In designing
Caisson we wish to capitalize on this trend and allow hardware
designers to operate at a familiar level of abstraction, allowing
hardware designs to be easily and transparently modeled using
Caisson. For this reason, we base the Caisson language on
finite-state machines.

While there are existing HDLs based on finite state ma-
chines, none target security as a first-class concern. Caisson
employs two novel features on top of finite state machines,
nested states and parameterized states to enable precise and
expressive enforcement of security policies.

1) Nested States: One of the fundamental methods in the
construction of secure systems to high levels of assurance is to
decompose the system into trusted and untrusted components,
arranged in an architecture that constrains the possible causal

5

effects and flows of information between these components.
On the other hand, resource limitations and cost constraints
may make it desirable for trusted and untrusted components to
share resources. This leads to systems designs and implemen-
tations in which the desired constraints on flows of information
between trusted and untrusted components need to be enforced
in spite of the fact that these components share resources. To
express the kind of state machine in which untrusted states
execute alternatively with trusted states without any inter-
ference, we allow designers to organize states hierarchically
so that all the logic responsible for controlling the switch
between trusted and untrusted components completely reside
in the parents states, while untrusted computation stays as
child states, without being able to affect the rest of the system.

2) Parameterized States: Since Caisson is a statically typed
language, every piece of hardware logic has to be tagged with
a static security type, and hence in order to compute on data
with different security levels, hardware logic also needs to
be duplicated. It would be more efficient in terms of chip
area to synthesize the same logic circuit for different security
levels and reuse that circuit by securely multiplexing the
different data onto that circuit. This observation motivates the
second Caisson language feature, parameterized states. The
benefit of parameterized states is that Caisson can synthesize
a single logic circuit that can safely be used at multiple security
levels. In other words, the data being operated on (the Caisson
registers) must have distinct types, but the logic operating on
the data (the Caisson states) can be parameterized over the
types of the data, making the synthesized circuit much more
efficient.

III. INFORMATION FLOW SECURE PROCESSOR

To demonstrate the utility of these features and of Caisson
in general, we design an information-flow secure processor in
Caisson. Designing secure hardware controllers and specifying
a statically-verifiable secure general-purpose processor is an
open problem. Such processors have an important application
in high-assurance embedded systems such as those found in
aircraft and automobiles.

Our processor implements a standard ISA (derived from
the commercial Altera Nios processor) . The ISA is imple-
mented using a combination of hardware data- and control-
flow controlled by the execution pipeline with four-stage
pipeline: Fetch, Decode, Execute, and Commit. Additional
microarchitectural features such as caches, prefetchers, and
branch predictors can be attached to the pipeline to improve
processor performance. We implemented a cache to illustrate
how microarchitectural features can be designed for security;
other features can be implemented using similar strategies.

To ensure that Untrusted data can never affect Trusted
computation, our processor time multiplex the Trusted and
Untrusted computation on the same physical hardware.
The key to secure hardware design is to guarantee that any
state changes due to Untrusted computation never affect
any Trusted computation even when the computations share
the same pipeline stages, cache, and other processor features.
Caisson’s language abstractions and type system collaborate to

Fig. 1. Comparison among a non-secured commercial processor (Base),
GLIFT processor, and a secure processor designed using Caisson.

provide the hardware designer with the tools needed to easily
encode and verify a secure design.

To quantify the hardware design overhead introduced by
our approach we compare our processor design (Caisson)
with a non-secured, simplified version of the commercial Nios
Processor (Base) and the same Nios processor augmented to
dynamically track information flow using GLIFT (GLIFT) [6]
(the only secure processor design in the literature). Synthesis
results of three designs is given in Figure 1. Results show that
designing a secure processor using Caisson not only provides
a strong static guarantee about information flow security, but
also (1) allows a more straightforward and natural way of
designing a secure processor, and (2) introduces much less
area (1.35X in Caisson vs. 3.34X in GLIFT), timing and power
overhead (1.09X in Caisson vs. 2.82X in GLIFT) than dynamic
tracking techniques such as GLIFT.

IV. CONCLUSION AND FUTURE WORK

In this work, we combine insights from traditional type-
based secure languages with domain-specfic design patterns
used for hardware design and present a new hardware descrip-
tion language, Caisson, for constructing statically-verifiable se-
cure hardware designs. By formalizing certain security design
patterns and providing direct language support for enforcing
their correct use, Caisson promotes thinking about secure
hardware design in new, useful ways that don’t naturally arise
in existing languages.

However as a statically typed language, Caisson requires all
the resources in the design to be statically partitioned based
on the security lattice, making the design inflexible. Extra
hardware overhead still exist due to the need to multiplexing
among different partitions. In our future work, we seek to
improve Caisson to deal with more dynamic designs with less
hardware overhead, and to design more powerful and practical
secure processors using our language.

REFERENCES

[1] O. Accigmez, J. pierre Seifert, and C. K. Koc. Predicting secret keys via
branch prediction. In The Cryptographers’ Track at the RSA Conference,
pages 225–242. Springer-Verlag, 2007.

[2] O. Aciiçmez. Yet another microarchitectural attack: Exploiting i-cache.
In CCS Computer Security Architecture Workshop, 2007.

[3] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[4] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, 1982.

[5] C. Percival. Cache missing for fun and profit. In Proc. of BSDCan, 2005.
[6] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T. Sher-

wood. Complete information flow tracking from the gates up. In ASPLOS,
March 2009.

[7] X. Li, M. Tiwari, J.K. Oberg, V. Kashyap, F.T. Chong, T. Sherwood,
B. Hardekopf. Caisson: a hardware description language for secure
information flow. In PLDI 2011.

6

The Implications of MIMO and Channel Bonding
on Channel Management in 802.11n

Lara Deek, Elizabeth Belding, Kevin Almeroth
{laradeek, ebelding, almeroth}@cs.ucsb.edu

I. I NTRODUCTION AND BACKGROUND

Wireless devices such as laptops, smartphones, and smart-
pads have gained rapid popularity in our modern age, and, for
users of such devices, it is not uncommon to come across the
termWiFi. Whether we are stopping at a hotel or having coffee
at our local coffee shop, we identify our ability to connect to
the Internet with the availability of aWiFi connection. WiFi
is a wireless standard that enables our devices to connect
to the Internet when within range of a wireless network, or
WLAN (Wireless Local Area Network), that is connected to
the Internet. The source of Internet connection in a WLAN is
referred to as aWiFi hotspot, or Access Point (AP), which users
must associate with in order to connect to the Internet. Now
that a connection is established, the method of exchanging
data in a WLAN is controlled by a set of standards referred
to as IEEE 802.11. In fact, WiFi was originally created as a
simpler term for the IEEE 802.11 standard.

Over the years, the 802.11 wireless standard has been
amended, and now consists of a family of standards, the more
commonly used ones being 802.11 a/b/g referred to aslegacy
clients. Recently, a new standard has emerged, IEEE802.11n,
which improves considerably on previous legacy clients. The
performance benefits provided by 802.11n as well as the
challenges to exploit them are the focus of our work.

IEEE 802.11n is a next generation WLAN technology that
adds major upgrades to legacy 802.11 a/b/g clients. Tradition-
ally, legacy clients have transmitted data on fixed 20MHz-
width channels. With the emergence of 802.11n, clients can
now operate on wider channels that achieve higher transmis-
sion rates, and, more specifically, on 40MHz-width channels.
Operating on 40MHz channels is referred to aschannel bond-
ing. Furthermore, where legacy 802.11 clients followed a SISO
(Single-Input Single-Output) antenna technology, 802.11n in-
corporated aMIMO (Multiple-Input Multiple-Output) smart-
antenna technology. In comparison to SISO systems which
transmit data over one antenna, MIMO transmits data over
multiple antennas simultaneously and takes advantage of this
multiplicity of data to improve either the signal-to-noiseratio
(SNR) at a particular location or the data rate, usingspatial
diversity andspatial multiplexing techniques, respectively [2],
[3]. Usingspatial diversity, one data stream is transmitted over
multiple antennas to achieve data redundancy and thus improve
SNR at the receiver. Usingspatial multiplexing, different data
streams are transmitted over each antenna thereby increasing
the amount of data per transmission, referred to as data

rate. We show that, in comparison to legacy clients, MIMO
and channel bonding in 802.11n exhibit behavior and add
complexity to the network that needs to be investigated to
efficiently manage bandwidth in WLANs.

In this work, we present a subset of our investigations. We
show that standard metrics, such as signal strength (RSSI)
between a transmitter and receiver pair, do not accurately
reflect performance. Due to the MIMO feature, the impact of
environment conditions and the presence of a rich scattering
environment play a major role in characterizing performance.
This knowledge allows for more accurate decision making
when assigning bandwidth to nodes to maximize performance.

II. EVALUATION ENVIRONMENT

We conduct our experiments using a stationary testbed
deployed in a semi-open office environment. The nodes are
laptops running the Ubuntu 10.04 LTS distribution with Linux
kernel version 2.6.32. All the laptops are equipped with
an 802.11n AirMagnet 2x3 MIMO PC card. The PC card
allows modulation and coding scheme (MCS) indices 0 to 15.
We categorize MCS indices into two groups based on their
corresponding MIMO mode and refer to these groups assets:
a set for MCS0 to 7, which exploitsspatial diversity, and a
set for MCS8 to 15, which achievesspatial multiplexing.

We vary the locations of transmitter and receiver pairs in
our testbed in order to obtain a rich set of link conditions
and qualities. In our experiments, we generate constant bit-
rate UDP traffic between transmitter and receiver pairs using
the iperf tool. We monitor the performance of UDP flows and
evaluate performance in terms of MAC layer throughput. We
conduct our experiments exclusively on the 5GHz frequency
range in an interference-free environment. We control the
transmission MCS as well as the channel width. We run our
experiments for all supported MCS values from 0 to 15 to
identify the best MCS for each tested link and channel width
configuration. We use the termbest throughput to reflect the
application layer throughput yielded by the MCS that achieves
the highest throughput for the link under study.

III. R ESULTS

We now take a close look at the effect of network parameters
on the performance between single transmitter and receiver
pairs.

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6

B
es

t T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Location

40MHz
20MHz

Fig. 1. Throughput achieved between single transmitter andreceiver pairs at
varying locations. The locations are sorted in order of decreasing RSSI, from
highest to lowest.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7A
ch

ie
ve

d
Th

ro
ug

hp
ut

 (M
bi

ts
/s

)

Modulation and Coding Scheme (MCS)

Link 1 - 40MHz
Link 2 - 40MHz
Link 2 - 20MHz
Link 1 - 20MHz 0

 5
 10
 15
 20
 25
 30
 35
 40

 8 9 10 11 12 13 14 15A
ch

ie
ve

d
Th

ro
ug

hp
ut

 (M
bi

ts
/s

)

Modulation and Coding Scheme (MCS)

Link 1 - 40MHz
Link 2 - 40MHz
Link 2 - 20MHz
Link 1 - 20MHz

(a) Good signal quality

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7A
ch

ie
ve

d
Th

ro
ug

hp
ut

 (M
bi

ts
/s

)

Modulation and Coding Scheme (MCS)

Link 1 - 40MHz
Link 2 - 40MHz
Link 2 - 20MHz
Link 1 - 20MHz

 0
 5

 10
 15
 20
 25
 30
 35
 40

 8 9 10 11 12 13 14 15A
ch

ie
ve

d
Th

ro
ug

hp
ut

 (M
bi

ts
/s

)

Modulation and Coding Scheme (MCS)

Link 1 - 40MHz
Link 2 - 40MHz
Link 2 - 20MHz
Link 1 - 20MHz

(b) Moderate signal quality

Fig. 2. Throughput achieved between transmitter and receiver pairs with
similar signal qualities. For similar RSSI values, performance is impacted
by the richness of the scattering environment, particularly when using high
modulation schemes that usespatial multiplexing to increase transmission data
rates.

A. What knowledge can we extract from RSSI in 802.11n
environments?

Figure 1 plots the highest achieved throughput between
single transmitter/receiver pairs at varying locations, sorted in
decreasing order of received signal strength indicator (RSSI)
of each node pair. Location 0 represents the station receiving
the strongest signal, and location 6 is where the lowest RSSI
is measured. We would expect that the highest RSSI would
allow the most accurate decoding of the transmitted signal,
and the best performance. Therefore, we expect throughput to
monotonically decrease as RSSI decreases. However, Figure1
shows that this is, in fact, not the case. For example, regardless
of the channel width, locations 1 to 4 outperform location 0,
even though the latter is the station receiving the strongest
signal. As a result, we can affirm that RSSI alone is not a
reliable link quality metric due to MIMO. In Section III-B,
we discuss how MIMO transmissions can take advantage of
different propagation phenomena. These phenomena depend
on the characteristics of the path between a transmitter anda
receiver, and hence can be highly unpredictable.

B. What is the impact of the environment on performance?

As shown in Section III-A, the behavior of transmissions
in 802.11n environments cannot be explained using RSSI

information alone. In fact, for links with similar signal qual-
ity, performance values differ considerably. We now analyze
whether rich scattering contributes to this behavior.

With the incorporation of MIMO in 802.11n networks,
the traditionally negative impact of multi-path diversitynow
contributes to performance, where MIMO overcomes fading
effects and instead uses multi-path diversity to improve signal
quality. We evaluate the impact of MIMO by comparing the
throughput achieved between links with similar signal quality.
In Figure 2(a), we compare two links with good signal quality
(−30dBm), where the client for Link 2 is in direct line-of-
sight of the transmitter while the client of Link 1 is separated
by obstacles. In Figure 2(b), we compare two links with
moderate signal quality (between−43 and −46dBm), where
the receivers are placed at different locations and their clients
are separated by different obstacles. For thespatial diversity
set (MCS 0-7), we observe little difference between links of
similar strength. That is to say, with spatial diversity, RSSI still
provides reliable information about the potential performance
of the link. However, for thespatial multiplexing set (MCS
8-15), we observe considerable differences in throughput. For
example, in Figure 2(a), Link 1 and Link 2 achieve similar
throughput values for low MCS indices, but for MCS greater
than 8, Link 2’s performance drops while Link 1 maintains
or improves its performance. In order for the signals to be
correctly separated and decoded usingspatial multiplexing,
they should arrive at the receiver across independent spatial
paths with sufficiently different spatial signatures. Therefore,
we can attribute the performance differences in Figure 2 to
the extent to which an environment is rich in scattering. The
impact of poor scattering is observed more accurately for
strong links where the transmitter and receiver are likely to
be in close range with each other, as seen for Link 2 in
Figure 2(a), where both nodes are in line-of-sight. In such
cases, performance varies considerably due to the potential
scarcity of independent spatial paths between transmitterand
receiver pairs.

IV. CONCLUSION

The addition of MIMO and channel bonding in the 802.11n
standard creates new opportunities to exploit bandwidth in
WLANs. However, as we have shown in this work, these new
features create new complexities in the network that need to
be evaluated to efficiently manage scarce bandwidth.

REFERENCES

[1] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl, “A
case for adapting channel width in wireless networks,”ACM SIGCOMM
Computer Communications Review, vol. 38, no. 4, pp. 135–146, October
2008.

[2] K. Pelechrinis, I. Broustis, T. Salonidis, S. V. Krishnamurthy, and P. Mo-
hapatra, “Design and deployment considerations for high performance
MIMO testbeds,” inWICON, 2008.

[3] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “802.11 with multiple
antennas for dummies,”ACM SIGCOMM Computer Communications
Review, vol. 40, pp. 19–25, January 2010.

8

VillageCell: Cellular Connectivity in Rural Areas
Abhinav Anand

University of California, Santa Barbara
abhinav anand@umail.ucsb.edu

Veljko Pejovic
University of California, Santa Barbara

veljko@cs.ucsb.edu

Elizabeth M. Belding
University of California, Santa Barbara

ebelding@cs.ucsb.edu

Abstract—Mobile telephony brings economic and social bene-
fits to its users. As handsets have become more affordable, the
ownership has reached staggering numbers, even in the most
remote areas of the world. However, network coverage is often
lacking in low population densities and low income rural areas
of the developing world, where big telecoms often defer from
deploying expensive infrastructure. To solve this coverage gap, we
propose VillageCell, a low-cost alternative to high-end cell phone
networks. VillageCell relies on software defined radios and open-
source solutions to provide free local and cheap long-distance
communication for remote regions. Our architecture is simple
and easy to deploy, yet robust and requires no modification to
GSM handsets. The performance evaluation, done by measuring
the call quality metrics and the system capacity under a realistic
rural-area network load, shows that VillageCell is indeed an
attractive solution for rural area voice connectivity.

I. INTRODUCTION

Voice communication is extremely important in rural areas
of the developing world. The lack of transportation infrastruc-
ture, high illiteracy levels, and frequent seasonal migrations
are some of the characteristics of rural areas that emphasise
the need for real-time voice communication. In addition, even
more than in the developed world, voice communication in
the developing world is a strong enabler of political freedoms,
economic growth and efficient health care [5], [2].
In our previous work [4] we investigated how rural Africans

indigenize voice communication tools and use voice-over-IP
(VoIP) applications. Our findings show that, despite having
global connectivity, rural dwellers prefer VoIP applications for
local, intra-village, communication. While VoIP communica-
tion experiences few problems in the developed world where
high quality connectivity is available, due to numerous techni-
cal obstacles rural area wireless networks cannot successfully
carry VoIP calls even within a single village.
Cellphones are another option for voice communication.

They are robust low power devices with a very simple and intu-
itive user interface, which makes them highly suitable for rural
areas in the developing world where energy and infrastructure
shortages, as well as illiteracy, are usual problems. Indeed,
cellphone penetration has skyrocketed in the developing world
[1]. Large telecom operators, however, remain reluctant to
deploy cellular infrastructure in remote areas. Deployment of
cellular networks is complex and requires installation of Base
Tranceiver Stations (BTS) and the supporting infrastructure.
The installation cost is high, and it remains difficult for the
operators to establish a profitable network in areas with low
income and population density.

Fig. 1. Village network architecture. OpenBTS provides small-scale
coverage, while Asterisk nodes enable call management and routing. The
expected number of users, their spatial layout, as well as the local network
traffic load, impact the OpenBTS and Asterisk interconnection and placement.

II. VILLAGECELL

In this paper, we propose a cost effective architecture,
dubbed VillageCell, for a GSM cellular network in conjunction
with a local rural-area network for VoIP services. The solution
uses a Software Defined Radio (SDR) controlled by a software
implementation of the GSM protocol stack, called OpenBTS1,
which abstracts the BTS and network components into a single
entity. OpenBTS uses SDR for transmitting and receiving
in the GSM bands and serves as a local cellphone base
station. To extend coverage, through a local wireless network,
we interconnect multiple BTSs. One or more Private Branch
Exchange (PBX) servers implemented in Asterisk2 are also in
the network and are used call management and routing.
Integrating GSM with VoIP telephony in this manner is cost

effective: OpenBTS provides cellular services for a fraction of
the cost of a commercial base station, while a local wireless
network brings free VoIP-based communication to cellphone
users. In summary, VillageCell delivers free local and cheap
long distance cell phone communication; it supports short
messaging service (SMS), does not require any modification
on the end-user devices and works with existing SIM cards.
Implementation: We implement an instance of VillageCell

in a lab setting using USRP23, a commercial SDR platform
that natively supports OpenBTS software and commodity PCs
running Linux and the Asterisk software. Connection among
the components is established through Linksys WiFi routers.

1http://openbts.sourceforge.net
2www.asterisk.org
3www.ettus.com

9

 0

 2

 0 2 4 6 8 10 12 14

Lo
ss

 [%
]

Background traffic [Mbps]

IntraBTS
InterBTS
InterAST

(a) Packet error rate.

 0

 2

 4

 0 2 4 6 8 10 12 14

Ji
tte

r [
m

s]

Background traffic [Mbps]

IntraBTS
InterBTS
InterAST

(b) Delay jitter.

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

M
O

S

Background traffic [Mbps]

IntraBTS
InterBTS
InterAST

(c) MOS.

Fig. 2. Performance metrics of VillageCell calls with varying level of background traffic and in different setups.

IntraBTS InterBTS InterAST
iperf-generated TCP 1.00% 1.32% 1.81%

Trace from Macha, Zambia 0.69% 0.82% 0.88%

TABLE I
PACKET LOSS WITH REALISTIC BACKGROUND TRAFFIC.

III. EXPERIMENTAL EVALUATION
Three different scenarios of a VillageCell phone call

exist depending on the relationship between the call ori-
gin/destination and the architecture layout (figure 1). In each
of the scenarios we measure packet loss, delay jitter and
the number of supported calls. We experiment with different
amounts of artificial background traffic as well as with a real-
world network trace from Macha, Zambia.
VillageCell call quality: In figures 2(a), 2(b), and 2(c)

we show end-to-end VoIP packet loss, delay jitter and mean
opinion score4 in all scenarios. Both VoIP loss and delay jitter
grow linearly with the background traffic. The default GSM
voice encoding is G.711, a codec with high loss tolerance,
and as long as the packet loss stays below 10% speech
communication is possible. In our case loss remains under
2% even with very high background load. To cope with high
jitter, VoIP applications often implement receiver-side buffers
that store packets for some time (usually less than 100ms)
and then sent them out to the decoder in regular intervals. In
our setup, the maximum jitter is always below 3ms, thus even
a short amount of buffering suffices. Finally, MOS values for
each of the scenarios with increasing background traffic remain
above 4, implying very good call quality.
Next we investigate VillageCell performance when the voice

traffic is mixed with a traffic trace gathered from a wireless
network in Macha, Zambia. We replay a randomly selected, ten
minute long, snippet of traffic from Macha. We use that traffic
in the same way we used the UDP background traffic earlier,
and measure the packet loss that a single call experiences
in each of the three configurations. To put the results in a
perspective, we also use iperf-generated TCP traffic as the
background traffic and repeat the experiments. Table I shows
that VillageCell looses only a small fraction of packets, thus
maintains a good call quality.
VillageCell capacity: We evaluate the VillageCell capacity

4Voice call quality is often expressed in mean opinion score (MOS) and
ranges from perfect (5) to impossible to communicate (1). Any score higher
than 3 is considered acceptable.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

Lo
ss

 [%
]

Simultaneous calls

IntraBTS(0bps)
IntraBTS(1Mbps)

InterBTS/AST(0bps)
InterBTS/AST(1Mbps)

Fig. 3. VillageCell supported calls scalability.

when it comes to multiple simultaneous calls. In our Village-
Cell implementation we establish a call and incrementally add
more calls. Once we have all the calls going, we measure the
packet loss rate in each of the calls and calculate the average
value. We show the results (figure 3) with both no background
UDP traffic and with 1Mbps constant UDP traffic. In all four
cases calls experience less than 0.3% increase in the packet
error rate as we activate all six calls.

IV. CONCLUSION
In this paper we presented VillageCell, a low-cost localized

cell phone system for rural areas that solves an important
problem of providing localized voice connectivity. In addi-
tion, through VillageCell SMS capability, or data-over-voice
solutions such as [3], our system also enables free local data
service. In future, we plan to develop applications specifically
suited for VillageCell’s unique affordances. Finally, the exis-
tence of a community WiFi network and our familiarity with
the Internet usage and needs of local population [4], present
a solid foundation for our planned work on deploying a full-
scale VillageCell deployment in Macha, Zambia.

REFERENCES
[1] ITU World Telecommunication/ICT Indicators Database, December 2010.
[2] R. Abraham. Mobile Phones and Economic Development: Evidence from

the Fishing Industry in India. In ICTD’06, Berkeley, CA, May 2006.
[3] A. Dhananjay, A. Sharma, M. Paik, J. Chen, J. Li, and L. Subramanian.

Data Transmission over Unknown Voice Channels. In MobiCom’10,
Chicago, IL, September 2010.

[4] D. Johnson, V. Pejovic, E. Belding, and G. van Stam. Traffic Charac-
terization and Internet Usage in Rural Africa. In WWW’11, Hyderabad,
India, March 2011.

[5] H. V. Milner. The Digital Divide: The Role of Political Institutions
in Technology Diffusion. Comparative Political Studies, 39:176 – 199,
March 2006.

10

Barely Alive Memory Servers:
Keeping Data Active in a Low-Power State

Vlasia Anagnostopoulou⋆, Ricardo Bianchini†, Tao Yang⋆, Frederic T. Chong⋆
⋆Department of Computer Science, University of California,Santa Barbara

†Department of Computer Science, Rutgers University
{vlasia, tyang, chong}@cs.ucsb.edu, ricardob@cs.rutgers.edu

Abstract—Current resource provisioning schemes in Internet
services leave servers less than 50% utilized almost all the
time. At this level of utilization, the servers’ energy efficiency
is substantially lower than at peak utilization. A solution to this
problem could be dynamically consolidating workloads intofewer
servers and turning others off. However, services typically resist
doing so, because of high response times during re-activation
in handling traffic spikes. Moreover, services often want the
memory and/or storage of all servers to be readily available
at all times. In this paper, we propose a newbarely-alive low-
power server state that facilitates both fast re-activation and
access to memory while in a low-power state. We compare this
state to on-off server consolidation, as well as state-of-the-art
approaches such as PowerNap and Somniloquy. Specifically, we
evaluate provisioning for unexpected load bursts in each energy-
saving scheme and find that the barely-alive state results in
reduced power consumption compared to the other schemes,
while preserving the memory data during consolidation.

I. I NTRODUCTION

Energy represents a large fraction of the operational cost of
Internet services. As a result, previous works have proposed
approaches for conserving energy in these services, such as
consolidating workloads into a subset of servers and turning
others off, and leveraging dynamic voltage and frequency
scaling of the CPUs [4]. Consolidation is particularly attractive
for two reasons. First, current resource provisioning schemes
leave server utilizations under 50% almost all the time. At
these utilizations, server energy efficiency is very low Second,
current servers consume a significant amount of energy even
when they are completely idle [2]. Despite its benefits, services
typically do not use this technique. A major reason is the fear
of high response times during re-activation in handling traffic
spikes.

In this paper, we propose an approach that does not com-
pletely shutdown idle servers, enables fast state transitions,
and keeps in-memory application code/data untouched. Specif-
ically, we propose to send servers to a new “barely-alive”
power state, instead of turning them completely off after
consolidation.In a barely-alive state, a server’s memory can still be
accessed, even if many of its other components are turned off. Keeping
data active and accessible in a barely-alive state enables software
to implement cluster-wide (or “cooperative”) main-memorycaching,
data replication and coherence, or even cluster-wide in-memory data
structures, while conserving a significant amount of energy. We
compare the barely-alive state to conventional consolidation
via complete server shutdown, as well as more recent hybrid

proposals such as PowerNap and Somniloquy. In particular,
we evaluate the effect of server restart latency on response
time during unexpected load spikes. Unexpected spikes may
occur due to a variety of reasons, including external events
(e.g., Slashdot effect, attacks), the temporary unavailability
of a mirror datacenter, operator mistakes, or software bugs.
Under latency constraints, greater restart latency translates to
a larger number of extra active servers provisioned to absorb
unexpected load. We evaluate the sensitivity of each energy
conserving scheme to the duration and magnitude of load
spikes, as well as to modifications to data while in energy-
conserving server states.

II. BACKGROUND AND RELATED WORK

Many papers have studied dynamic workload consolidation
and server turn off [4], [5]. The idea is to adjust the number
of active servers dynamically, based on the load offered to the
service. During periods of less-than-peak load, the workload
can be concentrated (either through state migration or request
distribution) on a subset of the servers and others can be turned
off.

Somniloquy [1] and PowerNap [3] are two recent works,
where low-power server states have been proposed. Somnilo-
quy augments the network interface to be able to turn most
other components off during periods of idleness, while retain-
ing network connectivity. In the low-power state,main memory
becomes inaccessible,so accesses can only be performed to
the small memory of the network interface. Moreover,updates
to main memory can only be performed after activation,
thereby increasing delay. In contrast, our state allows read
and write accesses to the entire main memory. PowerNap
rapidly transitions servers between active and “nap” state,
obviating the need for consolidation.In nap state, a server
is not operational.PowerNap requires server software to
avoid unwanted transitions to active state (e.g., due to clock
interrupts). More challengingly, PowerNap requires the server
to becompletely idle,which is becoming harder as the number
of cores per CPU increases (the idle times of all cores must
perfectly overlap). We compare the barely-alive state against
these alternative power-states extensively in Section III.

III. QUANTITATIVE EVALUATION OF BARELY-ALIVE

A. Benefits of Fast Activation

A significant challenge for all load consolidation schemes
is handling unexpected load spikes without violating latency

11

constraints in service-level agreements. In this section,we
present a simple analysis of barely-alive and previous schemes
when faced with a parameterized unexpected load spike. We
use this analysis to estimate extra server provisioning and
illustrate the tradeoffs of activation latency, standby power
consumption, and data update latency.

In Figure 1(left), we present an example of a synthetic load
spike. We can parameterize this load spike by duration and
amplitude, and choose parameters consistent with observed
behavior such as from studies of an HP customer’s Web server
trace. BA-2 stands for our barely-alive state.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

L
o

a
d

 [
%

 o
f

C
a

p
a

c
it
y
]

Time [min]

Load w. Time

Load

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

N
 A

c
ti
v
e

Time [min]

N of Active w. Time

Ideal/PowerNap
BA-2

Somni
Off

Fig. 1: Load spike (left) and server provisioning (right).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70

P
o

w
e

r-
o

v
e

rh
e

a
d

 [
W

]

Height of Spike [% of Capacity]

Power-overhead w. Height of Spike

Ideal/PowerNap
BA-2

Somni
Off

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10

P
o

w
e

r-
o

v
e

rh
e

a
d

 [
W

]

Width of Spike [min]

Power-overhead w. Width of Spike

Ideal/PowerNap
BA-2

Somni
Off

Fig. 2: Impact of spike height (left) and width (right).

To avoid excessive latency, extra active servers must be
provisioned to absorb unexpected load until more servers can
be activated. The number of extra active servers must match
the typical increase in load during the activation time. Thus,
the higher the latency of server activation, the more extra
servers must be provisioned. This can be seen Figure 1(right),
where the number of active servers before the load spike is
significantly higher for the On/Off system than for the more
sophisticated BA2, PowerNap, and Somniloquy systems. For
a baseline comparison, theIdeal system is an On/Off system
in which servers can be brought up with zero latency and no
energy overhead. In general, BA2, PowerNap and Somniloquy
are equivalent with respect to load spike provisioning, as long
as no data needs to be modified at servers in a low-power
state.

Figure 2 shows how the power overhead of extra server pro-
visioning (with respect to the ideal system) varies with spike
magnitude and duration. We can see in Figure 2(left) that the
On/Off system entails a modest level of overhead with spikes
of low magnitude (10,000 connections per second). However,
the overhead grows significantly as the spike increases in
magnitude. Figure 2(right) shows that, if the duration of the
spike is 2 minutes, the over-provisioning overhead is large.
The overhead drops to more modest levels for spikes lasting
10 minutes.

B. Benefits of Allowing Immediate Data Updates

Services modify data that may reside on servers that are
off or in a low-power state. A key advantage of barely-
alive systems is the ability to directly modify data in main
memory while in a low-power state. Modification of such data
is somewhat impractical for On/Off systems and PowerNap.
For On/Off systems, writes would need to be source buffered
and deferred to wake up, which can be problematic if systems
are off for long periods of time. PowerNap can avoid this
problem by waking up the server to perform data updates.
However, for all but the most insignificant of write intensities,
PowerNap would spend too long in active state.

Other than barely-alive, Somniloquy offers the best solution
to data updates while in a low-power state. Writes can be
buffered in the Somniloquy device. However, with the limited
size of the Somniloquy memory (64 MB), we assume that
writes would need to be buffered in their SD card auxiliary
storage. In Figure 3, we compare BA2 and Somniloquy as
the number of deferred writes varies. Writes are to objects
typical of our Web application (6 KB each). Figure 3(left)
quantifies the number of servers provisioned in each system.
As the number of buffered writes increases (either due to
higher write traffic or longer time in a low-power state), the
latency at server activation to read the writes from the SD card
becomes significant. This growing latency quickly results in
a large number of extra servers provisioned for unexpected
spikes. Figure 3(right) shows the same comparison in terms
of total power for active servers provisioned and power for
servers in the low-power state.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r-
o

v
e

rh
e

a
d

 [
W

]

N of Deferred-Writes [Nx106]

Power-overhead w. Deferred-Writes

BA-2
Somni

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20

N
 o

f
A

c
ti
v
e

N of Deferred-Writes [Nx106]

N of Active w. Deferred-Writes

BA-2
Somni

Fig. 3: Impact of deferred writes on active servers (left) and poweroverhead
(right).

IV. CONCLUSION

In this paper, we introduced a new low-power server state
called barely-alive. We compared this to conventional on-off
consolidation and other low-power server schemes. We found
that the ability to access memory while in a low-power state
can save significant energy, and has important advantages for
keeping data current.

REFERENCES

[1] Y. Agarwal et al. Somniloquy: Augmenting Network Interfaces
to Reduce PC Energy Usage. InNSDI, 2009.

[2] L. A. Barroso and U. Holzle. The Case for Energy-Proportional
Computing. IEEE Computer, 40(12), 2007.

[3] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Elimi-
nating Server Idle Power. InASPLOS, 2009.

[4] E. Pinheiro et al. Load Balancing and Unbalancing for Power
and Performance in Cluster-Based Systems. InCOLP, 2001.

[5] K. Rajamani and C. Lefurgy. On Evaluating Request-Distribution
Schemes for Saving Energy in Server Clusters. InISPASS, 2003.

12

Ranking Security-Important Assets in a Corporate
Network

Ali Zand∗, Christopher Kruegel∗, Richard Kemmerer∗, and Giovanni Vigna∗
∗Computer Security Lab

University of California Santa Barbara,
Santa Barbara, California 93106-5110

Email(s): {zand,chris,kemm,vigna}@cs.ucsb.edu

Abstract—Today, we are observing an increase in the com-
plexity of computer attacks as a result of the ever-increasing
complexity of the network computer systems. To provide security
for a complex distributed computer system, it is necessary to
know the system assets (services) and missions, their relationship
and their importance. In this paper we present a systematic
approach for extracting the missions of a corporate network
and the assets that contribute to those missions. We use this
information to assign an importance score value to each asset
that indicates the importance of protection of that asset.

I. INTRODUCTION

Everyday, the networked computer systems are being used
for more complex missions, resulting in greater complexity
in the system itself. In these circumstances, detecting and
defending each attack individually does not seem practical.
The protectors of the system need an evolving whole view
of the system to be able to make good decisions in a timely
manner. They need to have more situation awareness.

Endsley defines situation awareness as “the perception of
the elements of the environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status in the near future” [1]. To provide cyber
situation awareness, we need to provide the elements of the
system and their relationship, and the missions of the system
they contribute to. The existing approaches to provide cyber
situation awareness consist of vulnerability analysis and attack
graphs, intrusion detection and alert correlation, attack trend
analysis, causality analysis and forensics, taint and information
flow analysis, damage assessment, and intrusion response [2].
Unfortunately, none of the mentioned approaches can provide
an acceptable situational awareness independently from the
others. Ideally, we need a system using and integrating all
the mentioned approaches. To integrate these approaches, one
needs to know the elements (assets/services) of the system,
the goals (missions) of the system, and the way the elements
interact to deliver the goals.

The basis for any cyber situation awareness system is assets
(services e.g, NFS service, LDAP service, and IMAP service),
users, tasks, and missions(e.g, providing email service to
users). Every other piece of information should be directly or
indirectly linked to these entities. In order that the system be
consistent, we need to have the information about these entities
as accurate as possible, because the error in this information
will propagate through all other components of the system.

Unfortunately the current cyber systems are large and most of
the time there is no complete database of missions and assets
and their relationship. Furthermore, the administrators of the
system often have a hard time keeping track of the changes in
the system. Another problem is that the administrators have a
demanding job which leaves very little (if any) extra time for
them. Therefore, any practical system trying to address this
problem should consider administrators as a scarce resource,
which cannot be used to solve the problem altogether. Hence,
we need an automated asset and mission discovery system
which detects the assets, users, tasks, and missions of a
computer network system.

The only work, attacking the same problem, that we are
aware of, is Camus [3], which tries to automatically extract
the relationship between assets and missions and users. Camus
assumes that the required data about the missions and assets is
available in different formats in different places, and therefore
it takes a combination of data mining, inference, and fusion
approaches [3].

Considering the fact that the network information is main-
tained in different formats in different places, this approach
will need the administrator involvement in the process of
data fusion. Another problem is the missions are most of
the time documented in a very high-level (human-readable)
language which makes it difficult and many times impractical
for automated processing.

To address these problems, we use low-level netflow data to
extract information about missions and assets. More specifi-
cally, we extract the list of assets, tasks and missions that these
assets take part in. Finally we use the extracted information
about the assets to assign importance scores to each asset.
The output of the system can be used by other components of
a situation awareness system, or can be directly used by the
administrators to prioritize the protection of the assets.

II. OUR APPROACH

To provide situation awareness, we need an automated
method to extract information about assets, users, tasks and
mission from low-level data. We use netflow data gathered, in
a period of three months, from network switches of computer
science department. A netflow record specifies a TCP or UDP
connection start time, end time, source and destination IP
address and port number, and the number of packets and bytes
transferred.

13

Fig. 1. Sample correlated graph

A. Extracting Assets and Missions

We first extract all the services1. To extract the missions, we
build a correlated activity graph for the services. We expect
that if two services are part of the same mission, they will
have a relatively high correlation. In correlation graph, each
service is presented as a node, and two nodes are connected
if their corresponding services’ activities are correlated. To
find the correlated services we need to compute correlations
of services with each other.

To compute the correlation of two services, each service is
represented as three time series: requests, packets, and bytes
time series. The request time serie represents the number of
requests that specific service handled in consecutive periods
of time. Similarly, packets, and bytes time series represent
the same information for number of packets and number
of bytes sent by the server respectively. To compute the
correlation of two services, three correlation values between
their corresponding time series are computed. Two services are
considered correlated if any of these three correlation values
is greater than a threshold (we used 0.5 as the threshold). We
used Pearson correlation, because it is invariant to separate
linear scaling of two time-series. We create a dependency
graph for the services activity for each time interval t (we
used one hour intervals).

To find the missions of the system, we search for maximal
cliques2 in the correlated activity graph, and we consider
any maximal clique with more than two nodes a candidate
mission. A clique in the correlated activity graph represents a
set of services that their load increases and decreases together.
For each of these maximal graphs (candidate missions), we
count the number of time intervals they were present in
the dependency graph. Any candidate mission that appears a
considerable number of times, that is more than a threshold
(we used 24 in the experiments), is considered a mission.

Figure 1 shows a part of the correlated graph. On the right
you see a clique representing a candidate mission. Using this
approach, we were able to find data center updates, department
e-mails and web, and department roaming profile as different
missions being served by the department computer network.

1We present a service as a tuple of (IP address, port number, and protocol).
We present a mission as a set of services, working together to provide the
same goal.

2The problem of enumerating all maximal cliques is NP-Hard in general,
but it is polynomial in the number of maximal cliques.

B. Ranking Assets

To rank the services, we score them based on the following
list of criteria:

• number of bytes/packets sent/received (4 different scores)
• number of handled requests
• number of dependent services
• number of missions it is involved in
• number of failures
Each of these scores are linearly scaled between zero and

one, such that the maximum number is mapped to one and
the minimum number is mapped to zero. We use a weighted
sum of the mentioned scores as the final score of each service.
Specifying different weights, a security analyst can put more
stress into the criterion she is more interested in. We used
the same weight for all criteria. We checked the resulting
list of ranked important services with the administrators of
CS department and they verified the correctness of the list by
checking every important service they recalled in the top of
the list.

C. Extracting Meta-Missions

A meta mission is an abstract mission. For example, an
abstract email mission using IMAP server, SMTP server,
LDAP, and HTTP server is a meta-mission. A particular IMAP
server, SMTP server, LDAP server and HTTP server can be
used to implement a mission of that type. To extract meta-
missions, we look into missions that have the same number of
elements with the same type. Two missions are considered of
the same type if their constituting elements are from the same
port numbers or from the same service clusters. We detected
four verified meta-missions, which made us able to find four
backup services.

III. RESULTS AND CONCLUSIONS

We were able to extract 156 network services and 117
missions of the network. These missions were later grouped
into seven groups that correspond with six main missions of
the department and a mission from a lab. We also ranked the
services based on a list of criteria. We asked the administrators
to verify our results by comparing it with what they already
know. They verified the service ranking, and also the discov-
ered missions. We were also able to discover a mission that
the administrators were not aware of. The mission was run
by a lab to analyze binary programs. The administrator of the
mission verified the discovered components constituting the
mission.

REFERENCES

[1] M. Endsley, “Toward a theory of situation awareness in dynamic systems:
Situation awareness,” Human factors, vol. 37, no. 1, pp. 32–64, 1995.

[2] P. Barford, M. Dacier, T. G. Dietterich, M. Fredrikson, J. Giffin, S. Jajodia,
S. Jha, J. Li, P. Liu, P. Ning, X. Ou, D. Song, L. Strater, V. Swarup,
G. Tadda, and C. Wang, Cyber Situational Awareness, ser. Advances in
Information Security, S. Jajodia, P. Liu, V. Swarup, and C. Wang, Eds.
Boston, MA: Springer US, 2010, vol. 46.

[3] J. R. Goodall, A. D’Amico, and J. K. Kopylec, “Camus: Automatically
mapping Cyber Assets to Missions and Users,” MILCOM 2009 - 2009
IEEE Military Communications Conference, pp. 1–7, Oct. 2009.

14

Complete Information Pursuit Evasion in Polygonal
Environments
Kyle Klein and Subhash Suri

Department of Computer Science
University of California Santa Barbara

{kyleklein, suri}@cs.ucsb.edu

Abstract—Suppose an unpredictable evader is free to move
around in a polygonal environment of arbitrary complexity that
is under full camera surveillance. How many pursuers, each
with the same maximum speed as the evader, are necessary
and sufficient to guarantee a successful capture of the evader?
The pursuers always know the evader’s current position through
the camera network, but need to physically reach the evader to
capture it. We allow the evader the knowledge of the current
positions of all the pursuers as well—this accords with the
standard worst-case analysis model, but also models a practical
situation where the evader has “hacked” into the surveillance
system. Our main result is to prove that three pursuers are
always sufficient and sometimes necessaryto capture the evader.
The bound is independent of the number of vertices or holes in
the polygonal environment.

I. I NTRODUCTION

Pursuit-evasion games provide an elegant setting to study
algorithmic and strategic questions of exploration or moni-
toring by autonomous agents. Their mathematical history can
be traced back to at least 1930s when Rado posed the now-
classical Lion-and-Man problem: a lion and a man in a closed
arena have equal maximum speeds; what tactics should the
lion employ to be sure of his meal? An important aspect of
this problem, and its solution, is the assumption of continuous
time: each players motion is a continuous function of time,
which allows the lion to get arbitrarily close to the man but
never capture him. If, however, the players move in discrete
time steps, taking alternating turns but still in continuous
space, the outcome is different, as first conjectured by Gale
[2] and proved by Sgall [4].

A rich literature on pursuit-evasion problem has emerged
since these initial investigations, and the problems tend to
fall in two broad categories: discrete space, where the pursuit
occurs on a graph, and continuous space, where the pursuit oc-
curs in a geometric space. Our focus is on the latter: visibility-
based pursuit in a polygonal environment in two dimensions
for which it was shown in a simply-connectedn-gon,O(log n)
pursuers are always sufficient, and sometimes necessary [1].
When the polygon hash holes, the number of necessary and
sufficient pursuers turns out to beO(

√
h+log n) [1]. However,

these results hold only fordetectionof the evader, not for the
capture.

For capturing the evader, it is reasonable to assume that the
pursuers and the evader all have the same maximum speed.

This research was supported in part by NSF grant IIS 0904501.

Under this assumption, it was shown by Isler et al. [3] that
two pursuers can capture the evader in asimply-connected
polygon using arandomizedstrategy whose expected search
time is polynomial inn and the diameter of the polygon. When
the polygon has holes, no non-trivial upper bound is known
for capturing the evader.

We attempt todisentangle these two orthogonal issues
inherent in pursuit evasion:localization, which is purely an
informational problem, andcapture, which is a problem of
planning physical moves. In particular, we ask how complex
is the capture problemif the evader localization is available
for free? Besides being a theoretically interesting question, the
problem is also a reasonable model for many practical settings.
Given the rapidly dropping cost of electronic surveillance
and camera networks, it is now both technologically and
economically feasible to have such monitoring capabilities.
These technologies enable cheap and ubiquitous detection and
localization, but in case of intrusion, a physical capture of the
evader is still necessary.

Our main result is that under such a complete information
setting, three pursuersare always sufficient to capture an
equally fast evader in a polygonal environment with holes,
using adeterministicstrategy. The bound is independent of
the number of verticesn or the holes of the polygon, although
the capture time depends on bothn and the diameter of the
polygon. Complementing this upper bound, we also show that
there exists polygonal environments that require at least three
pursuers to capture the evader even with full information.

II. T HE PROBLEM FORMULATION

We assume that an evadere is free to move in a two-
dimensional closed polygonal environmentP , which hasn
vertices andh holes. A set of pursuers, denotedp1, p2, . . .,
wish to capture the evader. All the players have the same
maximum speed, which we assume is normalized to 1. The
bounds in our algorithm depend on the number of vertices
n and the diameter of the polygon,diam(P), which is the
maximum distance between any two vertices ofP under the
shortest path metric.

We model the pursuit-evasion as a continuous space, dis-
crete time game: the players can move anywhere inside the
polygonP , but they take turns in making their moves, with
the evader moving first. In each move, a player can move
to any position whose shortest path distance from its current

15

position is at most one; that is, withingeodesic diskof radius
one. We say thate is successfully captured when some pursuer
pi becomes collocated withe.

In order to focus on the complexity of the capture, we
assume a complete information setup: each pursuer knows the
location of the evader at all times. We also endow the evader
the same information, soe also knows the locations of all the
pursuers.

III. STRATEGY FORCAPTURE

In the following, we use the notationd(x, y) to denote the
shortest path distance between pointsx andy.

Our overall strategy is to progressively trap the evader in
an ever-shrinking region of the polygonP . The pursuit begins
by first choosing a pathΠ1 that divides the polygon into sub-
polygons (see Figure 1(a))—we will use the notationPe to
denote the sub-polygon containing the evader. The pursuers
choose a path satisfying the following definition:

Definition 1. (Minimal Path:) SupposeΠ is a path in P
dividing it into two sub-polygons, andPe is the sub-polygon
containing the evadere. We say thatΠ is minimal if

dΠ(x, z) ≤ d(x, y) + d(y, z)

for all points x, z ∈ Π and y ∈ (Pe \ Π).

Intuitively, a minimal path cannot be shortcut: that is, for
any two points on the path, it is never shorter to take a
detour through an interior point ofPe. We omit the details,
however, after an initialization period ofO(diam(P)2) moves,
the pursuerp1 can successfully guard the pathΠ1, meaning
that e cannot move across it without being captured.

Π1 Π2

x

y

zu v

(a)

u

v

Π1

Π3

Π2

e

(b)

Fig. 1. The left figure shows a polygonal environment, with twoholes (a
rectangle and a triangle).Π1 and Π2 are the first and the second shortest
paths between anchorsu andv. The right figure illustrates the main strategy
of trapping the evader through three paths.

In a general step of the algorithm, assume that the evader
lies in a regionPe of the polygon bounded by two minimal
paths Π1 and Π2 between two anchor verticesu and v.
(Strictly speaking, the regionPe is initially bounded byΠ1,
which is minimal, and a portion ofP ’s boundary, which is
not technically a minimal path. However, the evader cannot
cross the polygon boundary, and so we treat this as a special
case of the minimal path to avoid duplicating our argument.)
We assume that the regionPe contains at least one hole—
otherwise, the evader is trapped in a simply-connected region,
where a single (the third) pursuer can capture it [3].

The main idea of our proof is to show that, if we compute a
shortest pathfrom u to v that is distinct from bothΠ1 andΠ2,
then it dividesPe into only two regions, and that the evader is
trapped in one of those regions (see Figure 1(b)). We will call
this new path thethird shortest pathΠ3. We claim a pursuer
can guardΠ3 in O(n ·diam(P)2) moves, but omit the details.
This frees one of the other two pursuers to apply the same
strategy to the new smallerPe, and this can be recursively
applied until there are no holes inPe.

By formally proving the preceeding strategy we can show
the following theorem.

Theorem 1. Three pursuers are always sufficient to capture
an evader inO(n · diam(P)2) moves in a polygon withn
vertices and any number of holes.

Lastly, by carefully constructing a polygon from a graph
known to require three pursuers in the discrete setting, we can
show the following theorem.

Theorem 2. There exists an infinite family of polygons with
holes that require at least three pursuers to capture an evader
even with complete information about the evader’s location.

IV. CLOSING REMARKS

Traditionally, the papers on continuous space, visibility-
based pursuit problem have focussed on simply detecting the
evader, and not on capturing it. One of our contributions
is to isolate theintrinsic complexity of the capture from
the associated complexity of detection or localization. In
particular, whileΘ(

√
h + log n) pursuers are necessary (and

also sufficient) for detection or localization of an evader in a
n-vertex polygon withh holes [1], our result shows that full
localization information allows capture with only3 pursuers.
On the other hand, it still remains an intriguing open problem
whetherΘ(

√
h+ log n) pursuers cansimultaneouslyperform

localization and capture. We leave that as a topic for future
research.

REFERENCES

[1] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
Visibility-based pursuit-evasion in a polygonal environment. IJCGA,
9(5):471–494, 1999.

[2] R. K. Guy. Unsolved problems in combinatorial games. InGames of No
Chance, pages 475–491, 1991.

[3] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a
polygonal environment.Robotics, IEEE Transactions on, 21(5):875 –
884, 2005.

[4] J. Sgall. Solution of david gale’s lion and man problem.Theor. Comput.
Sci., 259(1-2):663–670, 2001.

16

Temporal Cross-Sell Optimization
Using Action Proxy-Driven Reinforcement Learning

Nan Li
Computer Science Department

University of California, Santa Barbara
Santa Barbara, CA 93106, U.S.A.

nanli@cs.ucsb.edu

Naoki Abe
Business Analytics & Mathematical Sciences Department

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

nabe@us.ibm.com

Abstract—Customer lifetime value modeling and temporal
cross-sell mining have emerged as two important directionsto
study customer behaviors. In this paper, we examine both in a
unified manner and address the challenge posed by the lack of
marketing action data. We propose a variant of reinforcement
learning using action proxies to optimally allocate immediate
rewards over product categories to maximize their cross-sell
effects on thelong-term rewards.

Keywords-Customer Lifetime Value; Cross-Sell; Markov Deci-
sion Process; Reinforcement Learning;

I. I NTRODUCTION

Customer lifetime value (LTV) plays a critical role in
marketing management. Recent works in data analytics have
developed an approach to maximize LTV based onreinforce-
ment learning (RL) andMarkov Decision Process (MDP) [1],
[2]. One shortcoming, however, is its requirement on historical
marketing action data to learn the effects of the actions on
the rewards. In many business scenarios, historical marketing
action data, such as promotion and resource allocation, may
very well be missing. We design a novel variant of RL,
action proxy-driven reinforcement learning (APRL), where
certain observable features are used asaction proxies (APs).
An important instantiation is immediate reward targets over a
number of product categories (“categorical action proxies”).
Since such quantities are tied directly to the rewards, uncon-
strained formulation would result in an unbounded behavior.
We propose to further impose constraints so that the assigned
immediate reward targets are bounded. The goal of learning
becomes the optimal allocation of immediate reward targets
to maximize their effects on thelong-term rewards. With this
concrete formulation, the proposed approach intends to allo-
cate sales/profits target values for multiple product categories
given a bounded budget, with the goal of maximizing the long-
term profits.

II. M ARKOV DECISION PROCESS

Customer LTV modeling can be formulated as maximizing
the discounted cumulative reward in the standard MDP ter-
minology. Fig. 1 shows that MDP estimates the LTV along
the optimal path (black arrow), while observed policy only
leads the customer along the historical path (white arrow).
The key components of a standard MDP include:(1) the state

������� ������	�
 ��
	��

���	�	��� ������	�
 ��
	��

������	�

�

��
���
�

���
�	�

������

��������

��� �	��� �������� ��������

����

��������

����

��������

��
���
�

��������

����������������

Fig. 1. Customer State Transition Example

space,S = {s1, s2, . . . , sn}, and an initial state distribution
φ : S → R; (2) the action spaceA = {a1, a2, . . . , am}, with
a transition probability functionτ : S × A × S → [0, 1], such
that∀s ∈ S, ∀a ∈ A, Σs′∈Sτ(s

′|s, a) = 1, whereτ(s′|s, a) is
the probability of transiting to states′ from s via actiona; and
(3) the expected immediate reward functionR : S × A → R,
where R(s, a) is the expected immediate reward of taking
action a at states. Given an MDP, a policyπ : S → A
determines the action in any states. Let Vπ(s) denote the
expected long-term cumulative reward at states if policy π is
followed at every step in the future, we have:

Vπ(s) = Eτ [R(s, π(s)) + γVπ(τ(s, π(s)))], (1)

whereγ is a discount factor within[0, 1], E is the expectation
and τ(s, a) is a random variable thatPr[τ(s, a) = s′] =
τ(s′|s, a). It is proven that for any MDP, there exists an op-
timal policy π∗ that satisfies Bellman’s fixed-point equation:

Vπ∗(s, a) = max
a′∈A

E[R(s, a) + γVπ∗(τ(s, a), a′)]. (2)

Nonetheless, difficulties arise when the exact forms ofτ(s, a)
andR(s, a) are unknown. This turns solving an MDP into an
RL problem, a variant of which is Q-learning.

Q0(st, at) = R(st, at),

Qk+1(st, at) = (1 − αk)Qk(st, at)

+ αk(R(st, at) + γmax
at+1

Qk(st+1, at+1)),

π∗(st) = argmaxat
Q∞(st, at), (3)

whereαk is the learning ratio at iterationk. Thus, one has an
arrayQ that is updated directly using experiences.

17

-200

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8

A
vg

. C
um

ul
at

ed
 R

ew
ar

d

Learning Iteration

C-APRL Policy
Observed Policy

(a) Saks, f = 1

100

200
300
500

1000
1500
2500
4000
6000

 1 2 3 4 5 6 7 8

A
vg

. C
um

ul
at

ed
 R

ew
ar

d

Learning Iteration

C-APRL Policy
Observed Policy

(b) MovieLens, f = 1

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8

A
vg

. C
um

ul
at

ed
 R

ew
ar

d

Learning Iteration

C-APRL Policy
Observed Policy

(c) Saks, f = 2

100

200
300
500

1000
1500
2500
4000

 1 2 3 4 5 6 7 8

A
vg

. C
um

ul
at

ed
 R

ew
ar

d

Learning Iteration

C-APRL Policy
Observed Policy

(d) MovieLens, f = 2

Fig. 2. Iterative Lift Evaluation on C-APRL and Observed Policies

III. C ONSTRAINED-RL MODEL

A. Action Proxies

In this paper, we proposeaction proxy (AP), which chooses
a semi-controllable set of observable features to substitute
missing actions. We employ the notion of “categorical action
proxies” (CAPs), which are changes of purchase amounts in
various product categories.

A policy in the context of CAPs is:π : S → A = {~δ},
where~δ = (δ(1), . . . , δ(C))T is the purchase amount change
vector of lengthC with C as the number of categories.
Specifically, π∗(st) = at = (δt(1), . . . , δt(C))T , where
δt(c), c ∈ {1, . . . , C} is the purchase amount change for
categoryc from time interval (t − 1, t) to (t, t + 1). at is
hereinafter used to denote the action vector at statest.

at = (δt(1), . . . , δt(C))T (4)

= (ft(1), . . . , ft(C))T − (ft−1(1), . . . , ft−1(C))T .

B. C-APRL Model

It is critical to constrain the learned policy so that the
assigned action proxies are comparable to those observed
empirically. Theconstrained MDP (C-MDP) enforces a set
of permissible policies,Π, which is determined w.r.t. a set of
l constraints on cumulative “costs”. We propose a variant of
C-MDP with empirical bounds expressed as follows:

Π = {π
∣∣BL

i ≤ Eφ[Cst
i × at] ≤ BU

i , i = {1, . . . , l}}
= {π

∣∣BL
i ≤ Eφ[Cst

i ×
(
δt(c)

)T
] ≤ BU

i , i = {1, . . . , l}}
= {π

∣∣ ∧c BL
i (c) ≤ Eφ[Cst

i (c, c)δt(c)] ≤ BU
i (c), i = {1, . . . , l}},

whereCst
i is a C × C diagonal matrix withCst

i (c, c) as the
unit cost incurred by action proxyc, c ∈ {1, . . . , C} in state
st for constrainti. BL

i andBU
i are bothC × 1 vectors, where

BL
i (c) andBU

i (c) are the lower and upper bounds of constraint
i for action proxyc. This leads to a constrained value iteration
procedure expressed by:

π∗
k(st) = argmax

π∈Π
E[R(st, at)+γVk−1(τ(st, at), π(τ(st, at)))].

We proposeconstrained action proxy-driven reinforcement
learning (C-APRL), an extension of reinforcement learning
(RL), to find the optimal policy.

IV. EXPERIMENTS

Saks Fifth Avenue Data. A random sample of 5,000
customers is used. A sequence of 68 states is generated
for each, corresponding to 68 marketing campaigns in 2002,
amounting to 340,000 data records. APs are the purchase
changes from 9 categories, and the immediate reward is the
total purchase in the next state.

MovieLens1 Data. The data contains 1,000,209 anony-
mous ratings of approximately 3,900 movies made by 6,040
MovieLens users. We re-process and segment it into 15 time
windows for each user. APs are the ratings of 6 movie
categories in the current time window and the immediate
reward is the total rating in the next one.

In our experiments, policy advantage is calculated using
the estimated average cumulated reward (EAC-reward) over a
specified number (f) of time stamps into the future. Fig. 2
plots how the EAC-rewards of the two policies change as
the learning iteration progresses. For C-APRL, a typical run
starts with a policy that is relatively uninformed, which does
not show apparent advantage over the observed policy. In
later iterations, C-APRL framework achieves significant policy
advantage via iterative re-modeling and re-optimization.

V. CONCLUSIONS

We have identified a general problem common to customer
LTV modeling, and proposed a solution based on a novel
variant of RL with “action proxy”. Our future works include:
1) explore other alternatives of formulating action proxies;2)
incorporate more types of business constraints.

REFERENCES

[1] N. Abe et al., Optimizing debt collections using constrained reinforcement
learning,KDD’10, pages 75-84.

[2] N. Abe, N. K. Verma, C. Apté and R. Schroko, Cross channeloptimized
marketing by reinforcement learning,KDD’04, pages 767-772.

1http://www.movielens.org/

18

A Flexible Open-Source Toolbox for Scalable
Complex Graph Analysis1

Adam Lugowski
Department of Computer Science

University of California, Santa Barbara
alugowski@cs.ucsb.edu

David Alber
Technical Computing Group

Microsoft Corporation
david.alber@microsoft.com

Aydın Buluç
High Performance Computing Research
Lawrence Berkeley National Laboratory

abuluc@lbl.gov

John R. Gilbert
Department of Computer Science

University of California, Santa Barbara
gilbert@cs.ucsb.edu

Steve Reinhardt
Technical Computing Group

Microsoft Corporation
steve.reinhardt@microsoft.com

Yun Teng, Andrew Waranis
Department of Computer Science

University of California, Santa Barbara
(yunteng, andrewwaranis)@umail.ucsb.edu

Abstract—The Knowledge Discovery Toolbox (KDT) enables
domain experts to perform complex analyses of huge datasets on
supercomputers using a high-level language without grappling
with the difficulties of writing parallel code, calling parallel
libraries, or becoming a graph expert. KDT delivers competitive
performance from a general-purpose, reusable library for graphs
on the order of 10 billion edges and greater.

I. INTRODUCTION

Analysis of very large graphs has become indispensable
in fields ranging from genomics and biomedicine to financial
services, marketing, and national security, among others. Our
Knowledge Discovery Toolbox (KDT) is the first package
that combines ease of use for domain experts, scalability
on supercomputers (large HPC clusters) where many domain
scientists run their large scale experiments, and extensibility
for graph algorithm developers. KDT addresses the needs
both of graph analytics users (who are not expert in al-
gorithms or high-performance computing) and of graph an-
alytics researchers (who are developing algorithms and/or
tools for graph analysis). KDT is an open-source (available
at http://kdt.sourceforge.net), flexible, reusable
infrastructure that implements a set of key graph operations
with excellent performance on standard computing hardware.

Figure 1 is a snapshot of a sample KDT workflow. First
we locate the largest connected component of the graph;
then we divide this “giant” component of the graph into
clusters of closely-related vertices; we contract the clusters
into supervertices; and finally we perform a detailed structural
analysis on the graph of supervertices. Figure 2 shows most of
the actual KDT Python code that implements this workflow.

II. EXAMPLES OF USE

We describe experiences using the KDT abstractions as
graph-analytic researchers, implementing complex algorithms
intended as part of KDT itself.

1This work was partially supported by NSF grant CNS-0709385, by DOE
grant DE-AC02-05CH11231, by a contract from Intel Corporation, by a gift
from Microsoft Corporation and by the Center for Scientific Computing at
UCSB under NSF Grant CNS-0960316.

Largest	

Component	

Graph	
 of	

Clusters	

Markov	

Clustering	

Input	
 Graph	

Fig. 1: An example graph analysis mini-workflow in KDT.

the variable bigG contains the input graph
find and select the giant component
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)
cluster the graph
clus = G.cluster(’Markov’)
contract the clusters
smallG = G.contract(clus)

Fig. 2: KDT code for mini-workflow in Figure 1.

Breadth-first search explores all the edges out of the current
frontier vertices. This is the same computational pattern as
multiplying a sparse matrix (the graph’s adjacency matrix) by
a sparse vector (whose nonzeros mark the current frontier
vertices). The example in Figure 3 discovers the first two
frontiers f from vertex 7 via matrix multiplication with the
adjacency matrix G, and computes the parent of each vertex
reached. The matrix multiplication is KDT’s SpMV primitive.
The KDT programmer can specify what operations should
be used to combine edge and vertex data, which is akin to
specifying edge and vertex visitors.

19

1	

1	

1	
 1	
 1	

1	
 1	

1	
 1	

1	
 1	

1	
 7	

7	

7	

7	

7	

7	

7	

	

3	

4	

5	

4	

4	

5	

4	

7	

7	

7	

5	

	

1	

1	

1	
 1	
 1	

1	
 1	

1	
 1	

1	
 1	

1	

fin	
 fout	
 G	
 parents	

×	

×	

=	

=	

root	

1st	
 Fron6er	

2nd	
 Fron6er	

fi	
 =	
 i	

1 2

3

4
7

6

5

new	

1 2

3

4
7

6

5

new	

old	

Fig. 3: Two steps of breadth-first search, starting from vertex
7, using sparse matrix-sparse vector multiplication with “max”
in place of “+”.

The Graph500 benchmark [4] measures the speed of a
computer doing a BFS on a specified input graph in traversed
edges per second (TEPS). The intent is to rank computer
systems by their capability for basic graph analysis, just
as the Top500 list ranks systems by capability for floating-
point numerical computation. KDT’s absolute TEPS scores
are competitive; the purpose-built application used for the
official June 2011 Graph500 submission for NERSC’s Hopper
machine has a TEPS rating about 4 times higher (using 8 times
more cores) than KDT on Hopper, while KDT is reusable for
a variety of graph-analytic workflows.

Betweenness centrality (BC) is an importance measure for
the vertices of a graph, where a vertex is “important” if
it lies on many shortest paths between other vertices. KDT
implements both exact and approximate BC by sampling
starting vertices in Brandes’ algorithm [2]. It constructs a batch
of k BFS trees simultaneously by using the SpGEMM primitive
on n × k matrices rather than k separate SpMV operations.
It then backtracks through the frontiers to update a sum of
importance values at each vertex. The straightforward KDT
code is able to exploit parallelism on all three levels: multiple
BFS starts, multiple frontier vertices per BFS, and multiple
edges per frontier vertex.

PageRank is naturally structured with linear algebraic prim-
itives and is composed of only half a page of KDT code.

Our Gaussian Belief Propagation (GaBP) [1] compared
favorably to the GraphLab [5] GaBP implementation on a 32-
core shared-memory system for solving finite element mesh
linear systems.

After initial explorations to understand the Markov Clus-
tering [6] algorithm and KDT well, an undergraduate student
produced our Markov Clustering routine in only six hours.

III. KDT ARCHITECTURE

KDT’s productivity benefits extend beyond simply provid-
ing an opaque set of built-in graph algorithms.

The kdt Python module exposes two types of classes: graph
objects and their supporting linear algebraic objects. It includes
classes representing directed graphs (DiGraph), hypergraphs

(HyGraph), as well as sparse matrices (SpParMat), sparse
vectors (SpParVec) and dense vectors (ParVec). Compu-
tation is performed using a set of pre-defined patterns:

• Matrix-Matrix multiplication (SpGEMM), Matrix-Vector
multiplication (SpMV)

• Element-wise (EWiseApply)
• Querying operations (Count, Reduce, Find)
• Indexing and Assignment (SubsRef, SpAsgn)

Each one is implemented for parallel execution and accepts
user-defined callbacks that act similarly to visitors yet follow
pre-defined access patterns that account for the bulk of pro-
cessing time. This allows KDT code to appear serial yet have
parallel semantics.

The sparse matrix and vector classes that support the
graph classes are exposed to allow complex matrix analysis
techniques (e.g., spectral methods). User-defined callbacks can
take several forms. KDT operations accept unary, binary and
n-ary operations, predicates, and semiring functions. Each one
may be a built-in function or a user-written Python callback
or wrapped C routine for speed.

KDT’s backend is the Combinatorial BLAS [3], which is
a proposed standard for combinatorial computational kernels.
It is a highly-templated C++ library and provides excellent
and highly scalable performance on distributed-memory HPC
clusters.

Taken together, these building blocks and finished algo-
rithms provide KDT with a high degree of power and flex-
ibility.

IV. EVOLUTION OF KDT
The design of KDT intentionally separates its user-level

language and interface from its computational engine. This
allows us to extend KDT easily along at least two axes: an
architectural axis, and a capability axis.

On the architectural axis we are currently working on two
engines: one for manycore shared-address-space architectures,
and one for more loosely coupled distributed-computing cloud
architectures. Specialized engines for architectures like GPUs
or the Cray XMT may follow.

On the capability axis, we are extending the set of algo-
rithms and primitives that underlie KDT in various ways,
including numerical computational primitives such as linear
equation solvers and spectral analysis (computing eigenvalues,
singular values, eigenvectors, etc.).

REFERENCES

[1] D. Bickson. Gaussian Belief Propagation: Theory and Application. CoRR,
abs/0811.2518, 2008.

[2] U. Brandes. A Faster Algorithm for Betweenness Centrality. J. Math.
Sociol., 25(2):163–177, 2001.

[3] A. Buluç and J.R. Gilbert. The Combinatorial BLAS: Design, Implemen-
tation, and Applications. The International Journal of High Performance
Computing Applications, online first, 2011.

[4] Graph500. http://www.graph500.org/.
[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.M.

Hellerstein. GraphLab: A New Parallel Framework for Machine Learning.
In Conference on Uncertainty in Artificial Intelligence (UAI), Catalina
Island, California, July 2010.

[6] S. van Dongen. Graph Clustering via a Discrete Uncoupling Process.
SIAM J. Matrix Anal. Appl, 30(1):121–141, 2008.

20

Melody Matcher: A Music-Linguistic Approach to
Analyzing the Intelligibility of Song Lyrics

Jennifer “Jenee” G. Hughes
Cal Poly San Luis Obispo

Computer Science Graduate Student
jhughes@calpoly.edu

Abstract—Melody Matcher is a semi-automated music compo-
sition support program. It analyzes English lyrics along with a
melody, and alerts the composer of the locations in the song where
the lyrics are not deterministically understandable. Basically, it’s
grammar- and spell-check for songs. This is significant, because
very little research has been done specifically on the quantifiable
measurement of English-language lyric intelligibility, other than
our project.

I. INTRODUCTION

Melody Matcher aims to replicate the human ability to
identify lyrics in a song that are easily misheard. We started on
this project, thinking that there would be carefully-specified
research on how lyrics match melodies, mathematically. As
it turned out, there was very little objective literature on the
subject. Because of the lack of objective information of the
subject, we had to develop our method from scratch. As we
progressed through our work, we went from thinking that
understandability depended only on emphasis-matching, to
realizing that syllable length played a huge part as well, to
realizing that there are many other musical, harmonic, and
linguistic factors.

Melody Matcher analyzes the intelligibility of song lyrics
by investigating several root causes:

• Lyric/Music emphasis mismatch, due to:
– Note intervals
– Phrase emphases
– Word emphases

• Word “cramming”, due to:
– Syllable lengths that exceed that of note length
– Mouth movement delta time intervals

• Word misidentification, due to:
– Altered pronunciation of words
– Phone similarity

⇤ Voicing (voiced vs. voiceless)
⇤ Beginning/end mouth positions
⇤ Type (Plosive, Fricative, affricate, nasal, lateral,

approximant, semivowel)
– Phone sequences with multiple syntactically-correct

interpretations
The fully-implemented Melody Matcher program will even-

tually take into account all of these causes of unintelligibility.
In this abstract, we will focus on lyric/emphasis mismatch,
which has already been implemented and is fully functional

in primary testing. The other sections have been implemented,
but are not fully tested and/or integrated into the main pro-
gram.

A. Target Audience and Goals

This program is to be used as a compositional aid by
anyone who wants to write songs and make them sound good,
technically. It should allow the song writer to focus on more
subjective criteria of what makes a song “good”, because it
will make the structural rules of lyric composition immediately
apparent.

Our hope for this project is that it will be useful to
burgeoning songwriters, who have the creative spark to make
wonderfully poetic lyrics, but lack the “ear” to match their
lyrics successfully to music. It should be particularly helpful
to songwriters who place a high emphasis on understandability
of lyrics (such as parody song writers, or lyricists for musical
theater).

Additionally, Melody Matcher will be useful for songwriters
for whom English is a second language. While they may
be a master lyricist in their native language, writing lyrics
in English can be a particular challenge, since so much of
lyric-writing is dependent upon knowing the cadence of the
language you’re writing lyrics in, and since English has no
easily-discernible rules for emphasis placement in words.

II. PRACTICAL EXAMPLE OF UNDERLYING THEORY

The structural rules of lyric placement are important, be-
cause without them, lyrics can become muddled and/or unin-
telligible. For example, in the song “Groovin’ (on a Sunday
Afternoon)”, by the Young Rascals, there’s a part in the bridge
that many people hear as “Life would be ecstasy, you an’ me
an’ Leslie”. In fact, the line is “Life would be ecstasy, you and
me endlessly”. The confusion lies with the last three syllables
of the phrase. The pronunciation of each version, if spoken
normally, is as follows:

Alphabetic: and Les- lie end- less- ly
SAMPA: @nd “lEs li “End l@s li

So, in the first phrase, we see that the emphasis pattern can
be simplified to “dum DUM-dum”, where the first syllable of
“Leslie” is emphasized. The second phrase’s emphasis pattern
is “DUM-dum-dum”, so the first syllable of “endlessly” is
emphasized.

21

When words are put to music, however, the musical empha-
sis overrides the textual emphasis. Sometimes, the meaning of
the phrase can change, if a previously un-emphasized syllable
becomes emphasized, or a previously emphasized syllable
loses its emphasis.

For “Groovin’ ”, the lyrics match up to the music in the
song as follows:

In this musical phrase, the emphasis always goes on the first
part of a beat (for the purposes of this example, a “beat” is
defined as a quarter note).

In this case, the first measure is emphasized for the notes
that correspond to the lyrics, “Life”, “be”, “ec-”(as in ec-sta-
sy) and “sy”(again, as in ec-sta-sy) (This is a vast oversim-
plification, but it works for now). So, the lyrics would be
emphasized as such:

Or, more simply:

Life would be ec-sta-sy

This musical emphasis matches the spoken emphasis of the
phrase, so it is intelligible as a lyric. (Though ecstasy’s first
syllable doesn’t start on the first part of beat three, it is still
on the first part of beat three, and therefore still emphasized.
Alternatively, since the first part of beat two didn’t have a hard
stop to it, the emphasis could have rolled over to the second
part, “ec”, which does have a hard stop.)

In contrast, take the second measure: the syllables “You”,
“me”, and “less” are emphasized in the music. This leads to
conflicting musical and spoken phrasing:

Musical Phrasing: You and me endlessly
Spoken Phrasing: You and me endlessly

The singer is now singing the phrase, syllable by syllable,
which they think of as syllable-note combinations:

YOU and ME end LESS lee

The singer, for his part, is doing what many singers are
taught to do, to make it easier to sustain the singing of words
that end with unsingable consonants: the unsingable consonant
is displaced onto the front of the next word. In this case, the
consonant “d” is not singable, so he displaces it onto the next
syllable, when he can: “and ME” becomes “an dME”, and “end
LESS” becomes “en dLESS”. So, the singer can effectively
think of the sung phrase as:

YOU an dME en dLESS lee

This doesn’t cause confusion for listeners, because they’re
used to hearing it. This does mean, however, that lyric place-
ment does not provide an accurate barometer to a listener of
where a word actually ends.

In addition, the singer is singing fudging his vowels, like
singers are taught to do, so “and” and “end” sound almost
indistinguishable. So, really, what listeners are hearing is this:

YOU en dME en dLESS lee

Now, the listener’s brain has to take this syllabic gobbledy-
gook, and parse it into something useful. They’ve currently
got this mess to deal with (represented in SAMPA syllables):

ju En dmi En dl@s li

They parse the first part just fine, because the emphases
match:

you and me En dl@s li

But no one says endLESSly. People say ENDlessly. So, the
listeners don’t recognize it. They have to work with what they
have. They already turned one “En d” into an “and”, so they
do it again:

you and me and l@s li

Now, they’re just left with LESS lee. And that fits Leslie,
a proper noun that fits in context and in emphasis placement.
So, the final heard lyric is:

you and me and Les- lie

The misunderstanding can be traced back to improper
emphasis placement. The songwriter probably didn’t even
think of that, and now he’s stuck: a one-hit-wonder with a
misunderstood song. We bet that in interview after interview,
someone asks him who Leslie is. It’s probably very frustrating
— especially since he could have just moved the word an eight
note later, and it would have been understood perfectly.

That’s the sort of situation this program is going to help
avoid.

III. FUTURE WORK

We plan to continue developing and refining the methods
through which Melody Matcher makes its determinations.
Eventually, we plan to use this as an underlying framework
for an interactive virtual environment where your surroundings
are affected and created via musical and lyrical input. This
should be completed in March 2012, with incremental updates
discussed on www.melodymatcher.com.

IV. CONCLUSION

In this paper, we have discussed at a high level parts of
the music-lingustic approach that Melody Matcher takes to
measure the intelligibility of lyrics. We covered some of the
major reasons that lyrics get misheard, along with a few
examples. Melody Matcher’s specific implementation details,
while fully specified elsewhere, were outside the scope of this
abstract, and we hope to cover them in a later paper.

22

The Composition Context
in Point-and-Shoot Photography

Daniel Vaquero and Matthew Turk
University of California, Santa Barbara

Email: {daniel,mturk}@cs.ucsb.edu

Abstract—We present the first study on the process of framing
photographs in a very common scenario: a handheld point-and-
shoot camera in automatic mode. We call the contextual infor-
mation given by viewfinder images, their capture parameters,
and inertial sensor data collected while the user is framing a
photograph the “composition context” of the photograph. By
silently recording the composition context for a short period of
time while a photograph is being framed, we aim to characterize
typical framing patterns. This includes adjusting the camera’s
orientation and point of view and triggering zoom and autofocus
controls. We have collected a large database of framing instances
by asking users to take pictures of scenes representing common
photographic situations. Our preliminary results indicate that
significant and useful variations in capture parameters exist in
this dataset, such as field of view, exposure time, focus, zoom,
and presence of moving subjects. We plan to use the results
of this study to help create new camera functionality. The new
camera will preserve the interface of current point-and-shoot
cameras. However, it will silently record the composition context
and use it to provide the user with alternative photographs of
the captured scene, computed by exploring the variations in
capture parameters present in the composition context. We expect
this capability to expand the photographic abilities of casual
and amateur users, who often rely on automatic camera modes,
without changing the widespread point-and-shoot paradigm.

Keywords-point-and-shoot photography; human factors; pic-
ture framing; contextual imaging; computational photography

I. INTRODUCTION

With the recent popularization of digital cameras and cam-
eraphones, everyone is now a photographer, and the devices
provide new opportunities for improving the process and final
results. While there has been research on what kinds of
subjects users prefer to photograph, and what they do with
the images once they are captured [1], no formal studies on
the process of framing an image using a camera have been
performed. To fill this gap, our study attempts to characterize
the actions performed by users while framing photos using
a point-and-shoot camera, in preparation for taking a photo-
graph. This includes adjusting the camera’s orientation and
point of view and triggering zoom and autofocus controls.

II. USER STUDY

We implemented a camera application based on the
Frankencamera architecture [2], running on a Nokia N900
smartphone. It mimics the interface of a point-and-shoot cam-
era in “automatic” mode, with a digital viewfinder, automatic
metering algorithms, and controls for zoom and autofocus.
A sensor box containing accelerometers and gyroscopes is

the user frames
and takes a photo

composition context

variations in capture parameters

viewpoint

exposure

moving
subjects

zoom

photo

gain:1.64
exposure: 0.03
focus: 9.875
…

gain:1.431
exposure: 0.03
focus: 9.875
…

gain: 1.02
exposure: 0.03
focus: 9.875
…

gain:1.64
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain: 2.51
exposure: 0.03
focus: 9.875
…

gain
exposure
focus …

Fig. 1. By silently recording viewfinder images and their capture parameters
for a short period of time while a photograph is being framed, we aim to
characterize framing patterns. We have collected a large database of framing
instances by asking users to take pictures of scenes representing common
photographic situations. Our preliminary results show that significant and
useful variations in capture parameters exist in this dataset.

attached to the camera. The camera silently records viewfinder
frames (at 25 frames per second) and their capture parameters,
as well as inertial sensor data, for the immediate 18 seconds
before the user triggers the shutter to capture a photograph.
We call the viewfinder frames, their capture parameters, and
inertial sensor data collected while the user is framing a
photograph the composition context of the photograph.

We now report preliminary results, already published as
a poster [3], and provide additional details on the current
state of the project1. Initially, we recruited nine volunteers
to participate in the user study. The sessions were conducted
at the UCSB campus, with variations in times of day and
weather conditions. Participants were provided with our cam-
era and asked to take three pictures for each of seven different

1A supplementary video, submitted with [3], can be downloaded
from http://www.cs.ucsb.edu/⇠daniel/publications/conferences/siggraph11/
VaqueroSIGGRAPH11.mp4

23

Composition Context Duration

0

30

10

20

40

2 4 6 8 10 12 14 16 18

#p
ho

to
s

seconds

Average Duration:
10.17 s

108 images had
variation of at least

one exposure stop in
the composition context

Exposure Variation

#p
ho

to
s

0

50

100

150

1 2 3 4 5
stops

Zoom was used while
framing 61 images

Zoom Variation

0

50

100

150

200

250

#p
ho

to
s

1 1.4 1.8 2.2 2.6 3.0
magnification change (X)

54 images had variation of
at least 10 diopters
in focal distance

in the composition context

Focus Variation

#p
ho

to
s

0
10

30

50

70

90

2 4 6 8 10 12 14 16 18
diopters

Fig. 2. Preliminary results: statistics from the collected data.

categories that represent common photographic situations: an
office environment, a close-up scene, a building, a sign, an
open area, a posed picture of a person or group of people,
and a moving subject. They were also instructed to try their
best to capture compelling images, relying on their own sense
of what makes a good picture. Once these 21 pictures were
taken, the users were requested to take at least five additional
pictures of scenes chosen at their discretion.

A preliminary analysis of the collected data indicates in-
teresting characteristics (Figs. 1 and 2). In this analysis, we
considered only the composition context frames that overlap
with the final photograph. For a total of 255 pictures, the
average duration of a composition context was of 10.17 s.
The camera was typically held still, with small movement due
to handshake, during short intervals before capture, interrupted
by sharp translations or rotations, due to attempts to adjust the
composition; this effectively constitutes variations in field of
view. 108 photos had exposure variations of at least one stop
in their composition contexts due to autoexposure, 54 photos
had at least 10 diopters of variation in focus due to autofocus,
and zoom was used for framing 61 photos. Moving subjects
were present in the composition context of 172 pictures, even
though the main subject intended to be photographed was
static in most of the pictures.

After this initial study, we proceeded with data collection
for more users. We have gathered data from study sessions
of 45 participants, and we are working on a detailed analysis,
including additional statistics (e.g., quantifying variations in
field of view) and correlations to answers provided to a
questionnaire of photography knowledge.

III. IMPLICATIONS: COMPOSITION CONTEXT CAMERA

We plan to use the results of this study to help create new
camera functionality (Fig. 3). From the user’s point of view,
the camera would preserve the interface of current point-and-
shoot cameras, and it would still be used in the same way.
However, when users trigger the shutter, instead of obtaining

panorama collage

HDR panning trajectories alt. views

Fig. 3. By silently recording viewfinder frames and their capture parameters
while a photograph is being framed, we enable the automatic generation
of variations of the photograph. Our method expands the end result of the
photo capture process; instead of obtaining a single photograph, the user may
also receive a collection of photo suggestions from the same scene, without
requiring additional effort while framing the photograph.

a single photograph, they may also obtain additional photo
suggestions from the same scene, created through automatic
combination of composition context frames captured under
varying parameters [4]. Examples of suggestions that can
be generated include panoramas, collages, extended dynamic
range, selective focus, synthetic long exposure, synthetic pan-
ning, motion trajectories, and moving object removal. Also,
alternative views and moments could be suggested by opti-
mizing computational aesthetics measures (such as [5] and
[6]).

A complete software solution would include the following
steps: (i) automatic image alignment, using, e.g., [7]; (ii) detec-
tion of moving areas; (iii) generation of the photo suggestions.
With the rapid advances in computational resources of portable
devices, we envision that this process could eventually be
implemented entirely on a camera. As our study shows that
variations in capture parameters in the composition context
happen naturally in the point-and-shoot process, no additional
input or familiarization with new interfaces would be required
from the user. We expect this capability to expand the photo-
graphic abilities of casual and amateur users, who often rely
on automatic camera modes, without changing the widespread
point-and-shoot paradigm.

REFERENCES

[1] N. A. Van House, M. Davis, M. Ames, M. Finn, and V. Viswanathan,
“The uses of personal networked digital imaging: an empirical study of
cameraphone photos and sharing,” in CHI ’05 Extended Abstracts, 2005,
pp. 1853–1856.

[2] A. Adams, E.-V. Talvala, S. H. Park, D. Jacobs, B. Ajdin, N. Gelfand,
J. Dolson, D. Vaquero, J. Baek, M. Tico, H. Lensch, W. Matusik, K. Pulli,
M. Horowitz, and M. Levoy, “The Frankencamera: an experimental
platform for computational photography,” ACM Trans. Graph. (Proc.
SIGGRAPH), vol. 29, no. 4, pp. 1–12, 2010.

[3] D. Vaquero and M. Turk, “The composition context in point-and-shoot
photography,” ACM SIGGRAPH Posters, 2011.

[4] R. Raskar, “Computational photography: Epsilon to coded photography,”
Emerging Trends in Visual Computing: LIX Fall Colloquium, France.
Revised Invited Papers, 2008.

[5] Y. Ke, X. Tang, and F. Jing, “The design of high-level features for
photo quality assessment,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2006, pp. 419–426.

[6] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Studying aesthetics in
photographic images using a computational approach,” in European Conf.
on Computer Vision, 2006, pp. 7–13.

[7] M. Brown and D. Lowe, “Recognising panoramas,” in IEEE Intl. Conf.
on Computer Vision, 2003, pp. 1218 –1225.

24

iSketchVis: Integrating Sketch-based Interaction
with Computer Supported Data Analysis

Jeffrey Browne∗†, Bongshin Lee∗, Sheelagh Carpendale∗‡, Timothy Sherwood∗†, Nathalie Riche∗
∗Microsoft Research †University of California, Santa Barbara ‡University of Calgary

Abstract—When faced with the task of understanding complex
data, it is common for people to step away from the computer
and move to the whiteboard, where they may easily sketch simple
visualizations. In this work, we present iSketchVis, with the goal of
making complex underlying data directly available at this point of
discussion—the whiteboard itself. With iSketchVis, people draw
the basic structure of a visualization, such as the labeled axes of
a graph, and the system augments this outline with their own
data and further options. We describe the interactive experience
resulting from an iterative, feedback-driven design process, and
discuss the challenges posed by this new domain of visualization.

I. INTRODUCTION

In our professional and leisure activities, we must manage
and understand more data, both individually and collabora-
tively. One increasingly common way of making sense of
this data is through visualizations, which have the poten-
tial to leverage the viewer’s innate perceptual capabilities to
more easily gain insights into complex information. Though
powerful visualization tools exist, when first brainstorming
about the aspects of data to be explored, or when multiple
people are discussing a data set, people often initially work
on whiteboards. However, since plotting data in these sketches
would require tedious repetition, the underlying data usually
remain buried in a computer, where interaction is constrained
to classic mouse and keyboard.

In this paper, we explore bringing data to sketched white-
board visualizations, enabling information to be explored and
examined in more fluid, natural ways, yet without interfering
with the traditional advantages of the whiteboard. We present
iSketchVis, a sketch-based visualization system that enables
creation of charts and direct interaction with data through
simple, computationally supported sketches. The core idea is
to augment the initial structure of a bar chart or scatter plot
drawn on a whiteboard with simple visualizations of actual
underlying data. After they are plotted within the sketched
reference frame, the data can be transformed using methods
such as changing the labeling of the axes, filtering particular
classes of data, and applying mathematical functions.

II. ISKETCHVIS INTERFACE

We illustrate the iSketchVis interface with a simple us-
age scenario by following Alice, a researcher who wishes
to explore crime rates across seven countries. Before begin-
ning sketching, Alice loads her data set (in comma separated
variable form) using a file selection dialog. Interaction with
iSketchVis then proceeds solely through a digital pen on a
wall-sized presentation screen simulating a whiteboard.

Fig. 1: Two single-stroke arrows specify the size and location
of a chart. Handwritten axis labels are inferred from the list
of columns in the data file.

A. Chart Initialization

To start exploration, Alice draws two intersecting arrows for
X and Y axes as she would draw a chart on a whiteboard; the
size, location, and orientation of these arrows determine the
physical dimensions of the chart. When iSketchVis recognizes
a pair of arrows, it provides the list of data fields populated
from the the data file as a side legend in case she does
not recall exactly the names of each data field (Figure 1).
iSketchVis also provides several text-entry prompts near the
X axis, Y axis, as well as for the color legend, shape legend,
and the function selector.

X and Y axes are mapped by matching handwritten text to
the first data field that starts with the specified letters, at which
point iSketchVis draws straight lines over the hand-drawn axes
and displays the specified data between the arrows in a scatter
plot, with labeled tic-marks and grid lines to show scale.

B. Data Transforming Functions

From the initial scatter plot, Alice wants to compare the
countries’ maximum crime rates. She circles “MAX” in the
function selector menu (Figure 2a), and iSketchVis shows
maximum values for each country. Once a function is selected,
iSketchVis groups points by X values, determines the Y values
as the result of the function over the grouped Y values, and
displays them. Now that she has compared maximum crime
rates, Alice wishes to view the average rate for each country,
and thus she erases the circle mark and selects “Average” by
writing an “a” in the function entry box (Figure 2c), just as

25

(a) (b) (c) (d)

Fig. 2: Transformation functions are selected either by circling an option (2a) or by writing in the function entry box. Drawing
a bar stroke across the X axis (2b) converts the default scatter plot into a bar chart. Values from the data file are drawn with
colors as mapped in the color axis legend (2c). Crossing out values in the legend axes filters out data points (2d).

she did to specify axes. Then, iSketchVis updates the view to
display average values for each country. iSketchVis currently
covers a basic set of functions: average, standard deviation,
sum, maximum, minimum, and count.

C. Changing Chart Type

To visualize the relative changes in crime rates between
different countries more clearly, Alice then draws a bar shape
across the X axis (Figure 2b), and the system converts the
chart into a bar chart.

D. Color and Shape Distinction

She now wants this information broken down by country, so
she writes a “c” in the color legend area. Upon selection, the
box expands into a legend where each value in the column
is mapped to a color, and each point in the plot is colored
according to its value in that column (Figure 2c). She then
notices that, while Brazil’s rate tended to decrease, Panama’s
rate was actually increasing.

If Alice wishes to further distinguish each year’s rate by its
data source, she can write an “s” to map “Source Level 1” to
the shape legend area, and each point will be given a symbol
(colored by country) according to its source.

E. Data Filtering and Axis Scaling

To focus on the difference between Brazil and Panama
more clearly, Alice crosses out (i.e., draws a line through) all
other countries (Figure 2d) from the color legend. iSketchVis
hides points with values matching the crossed out value and
automatically adjusts the scale of the X and Y axes to fit the
remaining data.

III. DISCUSSION

Data exploration through sketch-based charting is a new in-
formation visualization paradigm. Traditionally, novices have
had to put significant effort into generating a single chart,
so analysts are used to having a preconception of what their
data could look like before they actually see it. By lowering

the barrier to creating new charts, iSketchVis allows people
to visualize data sets before they understand the meaning of
what they plotted. For some of our participants, the speed with
which they charted exacerbated their difficulty understanding
their data. However, others found the speed and direct na-
ture of our system’s sketch interaction as a great boon. One
participant, self-identified as a novice to charting and data
exploration, compared iSketchVis to chart generation tools she
had used before saying, “[iSketchVis] feels like I can get my
head around it.”

As the first version of iSketchVis, the current implementa-
tion has some limitations. While some participants initially had
trouble with drawing single-stroke arrows the system could
recognize, everyone managed to consistently draw recognized
arrows after no more than ten failed attempts in the beginning
of the session. Future versions of iSketchVis should support
multi-stroke arrows, and we are investigating methods to speed
up this recognition.

Additionally, iSketchVis currently only supports two chart
types: scatter plot and bar chart. While an ideal system will
be much more capable (supporting pie charts, line charts,
etc.), people in our participatory design sessions still made
significant progress in analyzing their data with only the two
supported chart types.

Applying sketch-based interaction to information visual-
ization data charting shows great promise, and many of the
metaphors from charting on traditional whiteboards appear
to transfer readily to computationally supported whiteboards.
However, much work remains to be explored in the extent to
which sketch-based interactions support charting.

26

Reliable Selection of Interest Points for Keypoint
Matching

Victor Fragoso Computer Science Department
University of California, Santa Barbara

vfragoso@cs.ucsb.edu
Matthew Turk Computer Science Department

University of California, Santa Barbara
mturk@cs.ucsb.edu

Abstract—Establishing correspondence between a reference
image and a query image is an important task in computer
vision, as it provides information for further computation such as
image alignment, object recognition, visual tracking, and other
tasks. Normally, the correspondence between images is addressed
associating keypoints. Keypoints are locations over the images
that possess distinctive information over a pixel neighborhood
(patch). In order to produce a better correspondence, current
keypoint detectors pretend to locate points that are repeatable
given image variations (e.g., view angle, scale, rotation, etc.).
However, the correspondence produced by a matcher, the agent
that finds correspondence, is affected regularly because the key-
point detector is unable to find points previously detected and/or
detects new points given images that present some variation.
Consequently, the produced correspondence by the matcher is
not perfect, therefore, errors can be propagated in further steps.
In this work, we aim to reduce the mismatches produced by the
matcher. A confidence measure is assigned to a pair of associated
keypoints, and used to discard pairs that present a low confidence.
Our ongoing research results indicate that the measure reduces
keypoint mismatches at a good rate.

Keywords-keypoint matching, meta-recognition, post-score
analysis, ferns

I. INTRODUCTION

Keypoint matching is the process that determines the cor-
respondence between interest points detected on a “reference”
image and a “query” image (see Figs. 1 and 2). This correspon-
dence is important as it provides relevant information that is
widely used in several tasks. In image alignment, for example,
keypoints detected on a query image are “matched” against
keypoints detected on a reference image. This matching is then
used to compute a transformation matrix that maps the location
of every pixel from the query image to the corresponding
location on the reference image with a minimal error. However,
keypoints detected on a reference image are not necessarily
detected on a query image. Moreover, new keypoints can be
detected on a query image, causing the matcher to produce
mismatches. In this work, we aim to reduce the number
of mismatches in order to decrement the error in posterior
computation.

Matching two keypoints is normally done using descriptors.
A descriptor is a representation of a keypoint computed from a
surrounding patch of such point. A descriptor is commonly an
n-dimensional vector (e.g., SIFT [1], SURF [2]). Therefore,

Fig. 1. Overall process of keypoint matching & keypoint selection. The
selection block (dashed box) acts as a filter producing a reduced and cleaner
set of keypoint pairs produced by the matcher.

Fig. 2. Keypoint pairs and its confidence: Reference Image (Left) and
Query Image (Right). Keypoints detected on both images are circled and
a line connecting points represent the association computed by the matcher.
Lines in magenta denote a predicted correct match while yellow lines denote a
predicted incorrect match. The predictor does some mistakes, however, overall
it detects correct and incorrect matches at a good rate.

matching keypoints is the process of finding the closest
descriptor of a query descriptor x over all reference descriptors
yc corresponding to a reference keypoint c, i.e., a match is
found when the distance between yc and x is minimal.

Computing descriptors is computationally expensive as the
algorithms are designed to produce robust representations to
several image variations (e.g., scale, view angle, rotation). To
alleviate this problem, Lepetit and Fua [3] posed the matching
process as a recognition task, which implies a training phase
considering every keypoint as a unique class, and also intro-
duced a novel and fast-to-compute algorithm for representing a
patch. Keypoint recognition trains a Bayes classifier that learns
binary encoding of a keypoint’s patch with a randomized tree.
The binary encoding is based on image-intensity-differences
between random locations over the patch: assigning 1 if the
difference is positive, and 0 otherwise. A few years later,
Ozuysal et al. [4] introduced a new binary patch encoder which
used simpler and faster-to-compute structures called “Ferns.”
These structures encode a patch using the same criteria of

27

binarizing pixel differences as mentioned earlier. However, the
structures are much simpler than a randomized tree, making
it faster to compute and reducing memory footprint.

As described earlier, a matching process produces mis-
matches affecting further computation. To alleviate this issue,
we propose to assign a confidence value for every pair
produced by the matcher. Therefore, we can discard the pairs
that present a low confidence and preserve only those with
good confidence (low and good scores is controlled with a
threshold). The confidence measure here used was introduced
by Scheirer et al. [5]. Albeit the measure was developed for
ranking matches in biometric tasks, the measure still can be
used for keypoint matching. A set of scores is necessary to
compute the confidence measure. The scores are produced
by the matcher when selecting the best match: the matcher
compares the query representation (descriptor or ferns) against
every reference representation and returns the best match by
evaluating a distance (score). The produced scores that were
computed when matching are retained and are sorted. From
this sorted set of numbers only k scores are retained, i.e.,
the closest scores to the best match score are retained. This
set is used to estimate a Weibull distribution which is used
to evaluate if the best matching score is an outlier of this
distribution, if it is, we declare the matcher’s outcome as
correct, and incorrect otherwise.

II. EXPERIMENTAL RESULTS

The results here presented show the performance of the
confidence measure applied to keypoint matching using Ferns.
The dataset used for this experiment, Affine Covariant Features
1, contains the following items: datasets of images that present
several variations (e.g., viewpoint, rotation, scale, etc.); and
the corresponding geometric transformation: a 3x3 matrix that
relates the reference image to a query image. The testing
software used a modified OpenCV’s Fern descriptor matcher
which includes the confidence measure computation. 50 Ferns
were used for learning the detected 600 keypoints in the model
image with several keypoint detectors (see [6] for the list
of detectors). We consider the closest scores (k = 15) to
compute the Weibull distribution, and we used a decision
threshold δ = 0.9888 to indicate correct or incorrect match
as the confidence measure has support within [0, 1]. The
transformations provided by the dataset were used to compute
the estimated position of a certain keypoint on a query image.
This estimation was used to determine if the “prediction,” with
this configuration, was guessed correctly.

Table I shows the average confusion matrix, presented as
a row in the table, of every dataset, and also shows the ratio
of correct matches vs mismatches before and after selection.
As observed from the results, the predictor performs well
detecting true-negatives (TN) and true-positives (TP), which
imply that discarding the pairs predicted as incorrect increases
the aforementioned ratio. Consequently, further computation
from this reduced set has more chances to compute a cleaner
and accurate outcome.

1http://www.robots.ox.ac.uk/∼vgg/research/affine/

TABLE I
AVERAGE PERFORMANCE OF PREDICTOR WITH FERNS UNDER SEVERAL

IMAGE VARIATIONS AND DIFFERENT KEYPOINT DETECTORS

Dataset TP TN FP FN Accuracy Ratio Ratio after
Selection

Bark 0.03 0.55 0.41 0.01 0.59 0.06 0.13
Boat 0.19 0.44 0.34 0.03 0.61 0.32 0.63
Bikes 0.40 0.30 0.21 0.10 0.70 1.41 2.60
Trees 0.17 0.44 0.36 0.03 0.59 0.22 0.41
Graf 0.17 0.48 0.33 0.03 0.64 0.34 0.70
Wall 0.22 0.41 0.34 0.03 0.63 0.46 0.90
Leuven 0.49 0.24 0.18 0.09 0.73 1.40 2.86
UBC 0.52 0.25 0.17 0.07 0.76 2.27 5.20

III. CONCLUSIONS AND FUTURE WORK

The experiment suggests that the confidence measure pro-
posed by Scheirer et al. [5] works well detecting mismatches
using Ferns for keypoint recognition. However, the predictor is
still incapable of detecting false alarms, as Ferns in this setup
learn a patch and do not capture any geometric information
that could help in discarding keypoints more accurately. More
keypoint representations, specifically descriptors (e.g., SIFT
[1], SURF [2]), must be used to evaluate this measure and
gain a better picture of the keypoint matching process.

We would like to explore a potential extended training phase
of any keypoint recognition system, that includes a stage of
keypoint selection using this confidence measure: selecting
only those keypoints that present good reliability among
several predefined transformations. Therefore, a smaller set
of reliable reference keypoints can be produced.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, pp. 91–110, Nov. 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Comput. Vis. Image Underst., vol. 110, pp. 346–359,
June 2008.

[3] V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,”
IEEE Trans. Pattern Anal. and Mach. Intell., vol. 28, no. 9, pp. 1465
–1479, sept. 2006.

[4] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recogni-
tion using random ferns,” IEEE Trans. on Pattern Anal. and Mach. Intell.,
vol. 32, no. 3, pp. 448–461, march 2010.

[5] W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-
recognition: The theory and practice of recognition score analysis,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 33, pp. 1689–1695, August 2011.

[6] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of interest point
detectors and feature descriptors for visual tracking,” Int. J. Comput.
Vision, vol. 94, no. 3, pp. 335–360, 2011.

28

A Botmaster’s Perspective of Coordinating
Large-Scale Spam Campaigns

Brett Stone-Gross§, Thorsten Holz‡, Gianluca Stringhini§, and Giovanni Vigna§

§University of California, Santa Barbara ‡ Ruhr-University Bochum
{bstone,gianluca,vigna}@cs.ucsb.edu thorsten.holz@rub.de

Abstract—Spam accounts for a large portion of the email
exchange on the Internet. In addition to being a nuisance and a
waste of costly resources, spam is used as a delivery mechanism
for many criminal scams and large-scale compromises. Most of
this spam is sent using botnets, which are often rented for a
fee to criminal organizations. Even though there has been a
considerable corpus of research focused on combating spam and
analyzing spam-related botnets, most of these efforts have had
a limited view of the entire spamming process. In this paper,
we present a comprehensive analysis of a large-scale botnet
from the botmaster’s perspective, that highlights the intricacies
involved in orchestrating spam campaigns such as the quality
of email address lists, the effectiveness of IP-based blacklisting,
and the reliability of bots. This is made possible by having
access to a number of command-and-control servers used by
the Pushdo/Cutwail botnet.

I. INTRODUCTION

In August 2010, we obtained access to 13 Command
& Control (C&C) servers and 3 development servers (16
servers in total) used by botnet operators of the Cutwail spam
engine. This software has been used by some of the most
prolific spammers over the last few years, and is frequently
installed by a separate Trojan component known as Pushdo.
Cutwail utilizes an encrypted communication protocol and an
automated template-based spamming system to dynamically
generate unique emails with the goal of evading existing spam
filters. Each Cutwail bot maintains highly detailed statistics
about its own spam activities, which are reported back to
the C&C server. The data we obtained from these C&C
servers provides us with a novel, deeper insight into the modus
operandi of cyber criminals and the dynamics behind some of
the most sophisticated spam operations to-date.

What makes our research novel is the unique perspective
and the depth of our analysis. As a result of having gained
access to a large number of C&C servers, we are able
to observe an almost complete view of how modern spam
operations work. In particular, we can identify the problems
that make spam operations difficult, and the value of spam
from a financial point of view. In addition, we believe that
our findings will improve the understanding of the amount of
spam delivered by botnets.

II. THE CUTWAIL BOTNET

The original Cutwail botnet emerged back in 2007, and has
evolved in sophistication from using simple HTTP requests

to a proprietary, encrypted protocol. A typical Cutwail in-
fection occurs when a compromised machine executes a so
called loader called Pushdo, that behaves as an installation
framework for downloading and executing various malware
components. Depending on the victim’s system configuration,
the Pushdo malware will contact a C&C server, and request
additional malware components. After Pushdo contacts the
C&C, several malware modules are typically downloaded and
installed. This commonly includes a rootkit component to
hide the presence of malware on the infected system, the
Cutwail spam engine, and a list of IP addresses of Cutwail
C&C servers. At this point, the infected machine executes
the Cutwail spam engine and becomes a spam bot. Next, the
Cutwail bot will contact one of the IP addresses from the
list provided through the Pushdo bootstrap process, and wait
for instructions. The Cutwail C&C server provides several
critical pieces of information to begin a spam campaign.
More specifically, the C&C server provides the actual spam
content, delivered through the use of spam templates, a target
list of email addresses where spam will be delivered, a
dictionary consisting of 71,377 entries for generating random
sender/recipient names, and a configuration file containing
details that control the spam engine’s behavior, such as timing
intervals and error handling. Optionally, a list of compromised
SMTP credentials can be distributed to bots for “high-quality”
spam campaigns [1]. These techniques are used by similar
botnets to perform template-based spamming [2].

The Cutwail spam engine is known in spam forums by
the name 0bulk Psyche Evolution, where it is rented to a
community of spam affiliates. These affiliates pay a fee to
Cutwail botmasters in order to use their botnet infrastructure.
In return, clients are provided with access to a web interface
(available in Russian or English language) that simplifies the
process of creating and managing spam campaigns (referred
to by Cutwail as bulks). The interface includes features to
fine-tune nearly every part of an email message and spam
campaign. For instance, a user can choose to customize the
email’s headers to impersonate legitimate mail clients (e.g.,
Microsoft Outlook, Windows Mail, and TheBat), or may opt to
define their own headers. After defining the headers, the user
may define other fields, including the sender address, email
subject line, and body. All of these fields can make use of
macros that will instruct each individual bot to dynamically
generate (and fill-in) unique content for each email sent in
order to evade detection by spam filters, similar to other

29

spam botnets [2]. In order to increase the spam campaign’s
effectiveness, each Cutwail C&C runs a local instance of
SpamAssassin, a free open-source mail filter, that uses a set of
heuristics to classify spam. Once the email template has been
created, it is automatically passed through SpamAssassin and
can be tweaked until it successfully evades detection. After
creating the spam message, the user must specify several pa-
rameters such as a target email address list, a configuration file
that controls a number of bot parameters (e.g., sending rates,
timeouts, retries, etc.), and the time when the spam campaign
will commence. If a Cutwail user requires assistance, they
can refer to an instruction manual that is included, or contact
Cutwail’s support team.

III. DATA COLLECTION

The primary tool that we utilized was ANUBIS [3], a
framework for dynamic, runtime analysis of binary programs.
ANUBIS runs a Windows executable and records during run-
time the program’s behavior such as file system modifications
and network activity. At the time of writing, the system
processes tens of thousands of malware samples per day and
offers us an insight into the latest malware trends [4]. By
searching through the ANUBIS database, we were able to
identify 30 distinct Cutwail C&C servers based on their unique
communication signatures. We then contacted the hosting
providers whose servers were being used for controlling the
botnet. We provided them with evidence that specific servers
within their network were used for malicious purposes and
requested the take down of these servers.

As a result of our notification and mitigation steps, more
than 20 servers were shut down and we were able to obtain
access to 16 servers used by Cutwail controllers from some
of the hosting providers. These servers contained a wealth of
information, including:

• More than 2.35 TB of data.
• 24 databases that contain detailed statistics about the

infected machines and overall spam operations.
• Spam templates and billions of target email addresses for

spam campaigns.
• The botnet’s source code and a highly detailed instruction

manual for botnet operators.

IV. ANALYSIS OF THE BOTNET

It is evident from the content on these servers that there
are several different crews renting these botnets. By analyzing
the data on the C&C servers, we found that, on average, there
were 121,336 unique IPs online per day, and 2,536,934 total
IPs observed over the whole analysis time frame. India (38%),
Australia (9%), Russia (4%), Brazil (3%), and Turkey (3%)
account for the largest number of spam bots. One possible
explanation is that the Cutwail controllers may specifically
target Indian machines because the cost per bot is cheaper
than those in other geographic regions.

The most interesting information retrieved from the C&C
servers was stored in the databases containing meticulous
records for each spam bot. More specifically, the botnet
controllers maintain detailed statistics per infected machine

(identified via a unique IP address) in order to measure
the effectiveness of their spam campaigns. We found that a
spammer’s job is complicated by a number of factors including
invalid email addresses, SMTP errors, and blacklisting. As a
result, the amount of spam that was actually delivered (i.e.,
accepted by mail servers) was only around 30.3%, and the
actual volume was likely much less after client-side spam
filters are taken into account. This delivery rate is slightly
higher than the 25% delivery rate of the Storm botnet [5].

The largest cause of failure was invalid email addresses ac-
counting for 53.3% of errors, followed by SMTP blacklisting
(16.9%), miscellaneous STMP errors (11.8%), and connection
timeouts (11.3%). Interestingly, 3.5% of mail servers notified
the sender (in this case, the bots), that the content of the email
was flagged as spam. Despite these complications, the amount
of spam that is sent by Cutwail bots is immense. During one
period from July 30, 2010 and August 25, 2010 the database
records show 87.7 billion emails were successfully sent.

Overall, records contained on these Cutwail servers dated as
far back as June 2009 and reported 516,852,678,718 messages
were accepted for delivery out of a total of 1,708,054,952,020
attempts. Note that we obtained roughly one-half to two-thirds
of the active Cutwail C&C servers, so the overall numbers are
likely higher.

The content of the email messages sent by Cutwail included
pornography, online pharmacies, phishing, money mule re-
cruitment, and malware. The malware (e.g., the ZeuS banking
Trojan) is typically distributed by enticing a user to open an
attachment in the form of a greeting card, resume, invitation,
mail delivery failure, or a receipt for a recent purchase. In
addition, many of the emails contained links to malicious
websites that attempted to covertly install malware on a
victim’s system through drive-by-download attacks. Cutwail
operators also advertised content to Russian speakers such as
real estate and ski resorts.

V. CONCLUSIONS

We believe that these insights will improve the security
community’s understanding of the underground economy. In
addition, the data that we provide can be used to validate or
refute results built on simulation, or by speculations based on
the observations of subsets of botnet components.

REFERENCES

[1] C. Nunnery, G. Sinclair, and B. B. Kang , Tumbling Down the
Rabbit Hole: Exploring the Idiosyncrasies of Botmaster Systems in a
Multi-Tier Botnet Infrastructure, In USENIX LEET Workshop, 2010.

[2] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M.
Voelker, V. Paxson, N. Weaver, and S. Savage, Botnet Judo:
Fighting Spam with Itself. In Network & Distributed System Security
Symposium, 2009.

[3] International Secure Systems Lab, Anubis: Analyzing Unknown
Binaries. http://anubis.iseclab.org.

[4] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, A
View on Current Malware Behaviors. In USENIX LEET Workshop,
2009.

[5] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. Voelker,
V. Paxson, and S. Savage, Spamalytics: An Empirical Analysis of
Spam Marketing Conversion. In ACM CCS 2008.

30

Back to the Future: Replaying Malicious Web-pages
for Regression Testing

Yan Shoshitaishvili, Alexandros Kapravelos, Christopher Kruegel, Giovanni Vigna
Computer Science Department

UC Santa Barbara
Santa Barbara, USA

{yans, kapravel, chris, vigna}@cs.ucsb.edu

I. ABSTRACT

The arms race between malicious page detection and the
evasion of that detection has produced a lot of historical
data with regards to the evolution of malicious pages. In this
paper, we present DeLorean, a system for tracking malicious
pages’ evolution through time in order to improve analysis and
detection techniques. While doing so, we overcome several
challenges ranging from tool and library limitations to clever
attempts by the writers of malicious pages to detect and
prevent our analysis.

II. INTRODUCTION

In recent years, exploitation of unsuspecting webizens by
malicious web pages has become one of the largest vectors
enabling the spread of malware. Consequently, an arms race
has arisen between the malware authors and the good guys
(governments, traditional security companies, and also entities
such as Google and Microsoft which have stakes in the
struggle). As the techniques for detection of malicious pages
and for the evasion of that detection improve, the tools on
both sides and the pages themselves change. Additionally,
malicious pages are frequently removed from their hosts as
they are detected, so a once-detected malicious page may
no longer be in existence at a later date. These changes in
malicious pages make it very difficult to test web security
tools as new versions are developed, since the sites that the
old versions were tested against may no longer exist. Thus, a
utility for emulating the actions of a malicious page is needed
to provide an environment for reliable regression testing of
evolving security tools.

One tool that will benefit from such functionality is
Wepawet [3], deployed at UCSB to analyze submitted pages
and determine which of them are malicious. It is a per-
fect example of a tool that needs regression testing support
throughout its development – as modifications are made to the
detection engine, old pages need to be re-analyzed to ensure
that there is no degradation of detection capabilities.

In this paper we propose DeLorean, a system that we
developed to provide malicious web page regression testing
and allow web security tools to better analyze and understand
how malicious web pages work. DeLorean provides this
functionality in a transparent way, requiring (depending on
its configuration) few to no changes on the client end. This

Fig. 1. Regression Testing Architecture

allows our system to be effectivelly used without having to
setup a complicated infrastucture to provide the service. It
provides the capability to accurately replay the actions of a
malicious website, by treating non-deterministic replays with
best effort and managing to serve requests that were not
identical in the original run by serving the most appropriate
replacements. It also supports several configurations to fit the
client’s requirements, and handles parallel replays of malicious
websites to allow for increased regression testing efficiency.

III. ARCHITECTURE

The first step to replaying the actions of a malicious website
is the recording of its actions when it is running on the
original hosts. This is provided for us as part of Wepawet’s

31

standard operation. An HTTP dump is saved of all data sent
throughout the processing of a request for the page, including
any redirects, specific HTTP errors, and all supporting data
such as CSS and JS files. These dumps are subsequently
parsed by DeLorean to provide the data that will eventually
be replayed to the client. URLs are noted, and counters are
kept for URLs that are requested more than once, in case
the response is different throughout the multiple calls to such
pages.

When the client requests a page for the nth time, the
replaying server serves the nth occurrence of that page from
the HTTP dump. This page may be an actual HTML page,
a CSS or JavaScript resource, or even a formatted error page
recorded from the original run. In all cases, the HTTP headers
are reproduced from the old log, including the HTTP response
codes.

One complication that was encountered was the propensity
on some malicious pages to conduct chain redirects through
randomized hosts. The JavaScript contained in the page would
generate an IP address based on several parameters and
redirect to it, and the resulting page would do likewise until
the final malicious page was reached. Since these generated
IP addresses can be different from those encountered during
Wepawet’s original run, we may not necessarily have their
responses in the HTTP dump, and the replaying server would
be at a loss as to what to respond with. The implemented
solution, in this case, checks for that URL across all of the
hosts in the dump if the requested host is not present. If it
finds a similar URL on a differing host, that request is returned
instead. This allows such redirect chains to process through to
their ends, allowing DeLorean to handle such a case.

DeLorean can operate in several modes, depending on the
client’s requirements, making it suitable for multiple environ-
ments. The first mode is a proxy-based approach in which the
client simply uses the server on which DeLorean is running
as its proxy. All requests are thus routed to the replaying
server, and the malicious web page is replayed to the client.
The advantage of this approach is that it does not interfere
with other workload running on the client, since proxies can
generally be set on a per-application basis.

However, the proxy approach is sometimes inadequate.
Specifically, Flash and Java applets can ignore or detect proxy
settings, and certain clients (for example, embedded systems)
may not support proxies at all. For these cases, DeLorean
provides a proxy-less, transparent IP sinkhole configuration.
The client (or the client’s router) is configured such that any
outbound packets, regardless of their initial destination, are
redirected to the machine running the replaying server. This
way, DeLorean can receive and respond to all requests. With
this approach, applications on the client would be unaware of
the change.

To facilitate efficient regression testing, DeLorean also
provides support for replaying web pages to multiple clients
in a concurrent fashion. This is achieved via a small callback
program running on the client. Whenever the replaying server
receives a request for a page, it connects back to the client
host and requests an identifier for the request. The client
examines its host’s connection data, identifies the PID of the

process which originated the request, and responds to the
replaying server with an identifier consisting of the PID and
its hostname. DeLorean thus tracks the page request history
separately for each process on every host, allowing multiple
malicious page replays to be carried out simultaneously.

IV. RELATED WORK

Chen et al. [2] proposed a system for automated collection
and replay of web-based malware scenarios called WebPatrol.
The main weakness of their approach is their use of proxy
authentication to isolate different clients. Our approach to
concurrency is an improvement over WebPatrol’s method of
proxy authentication due to the fact that certain applications,
like Google Update [1], though containing proxy support, do
not support proxy authentication. As a result, any such appli-
cations will fail to work with concurrency through WebPatrol.
One should also take into consideration the scalability and
deployment issues of using different credentials per client and
the fact that using our approach, we can have hundreds of
clients (browsers) on a single machine using the regression
testing service simultaneously.

REFERENCES

[1] Google Update lack of proxy authentication. http://www.google.com/
support/pack/bin/answer.py?answer=56921.

[2] K. Z. Chen, G. Gu, J. Nazario, X. Han, and J. Zhuge. WebPatrol:
Automated collection and replay of web-based malware scenarios. In
Proceedings of the 2011 ACM Symposium on Information, Computer,
and Communication Security (ASIACCS’11), March 2011.

[3] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-
by-Download Attacks and Malicious JavaScript Code. In Proceedings of
the International World Wide Web Conference (WWW), 2010.

32

Generating Applications for the Cloud from Formal
Specifications

Christopher Coakley, Peter Cappello
University of California, Santa Barbara

{ccoakley, cappello}@cs.ucsb.edu

I. INTRODUCTION

Web Applications are ubiquitous. Unfortunately, so are
errors in implementation and design, as highlighted by well-
publicized security breaches and system outages. Fortunately,
there are substantial efforts to make developing more robust
web applications possible.

Model-View-Controller analysis restrictions. Many mod-
ern web applications are built using a specific framework
assuming a specific architecture. This specificity is used re-
strict to general software verification techniques to make them
scale better or require less developer effort. By assuming an
application is built using specific semantics of a Model-View-
Controller architecture, application behavior is analyzed by
looking at only a small subset of the total application code,
as in [1]. They analyze Rails model definitions and translate
them into Alloy [2] for bounded verification of manually
specified properties. Unfortunately, properties that cannot be
inferred from the model relationship definitions cannot be used
in the verification process. For example, if a delete function
implemented cascade delete behavior in Ruby code instead
of simply using the :cascade symbol in its Rails relationship
definition (a pathological example), the analyzer cannot know
that this behavior exists.

Model Driven Architecture. By specifying application
behavior with domain-specific languages, the OMG hoped to
ease the analysis of applications. UML supports the introduc-
tion of stereotypes, enabling tool implementers to improve its
expressiveness. WebAlloy [3] uses declarative models and ac-
cess control restrictions in Alloy to generate web applications.
Unfortunately, the semantics of the domain-specific language
and the tight coupling with the implementation eliminated
implementation overrides, resulting in a J2EE application
that disallowed Java code from the developer. All custom
application logic was restricted to the jsp pages, violating a
central principle in the MVC architecture.

Design-by-Contract. Design by Contract, coined by
Bertrand Meyer in the development of the Eiffel language,
is adapted for Java projects [4], and received recent attention
[5]. Design-by-Contract enables the use of preconditions and
postconditions for methods and invariants for classes. Pre-
conditions, postconditions, and invariants are boolean pred-
icates. If the caller of a method satisfies the preconditions,
the method implementation guarantees that the postconditions
will be satisfied. A class invariant is a predicate conjoined

with every public method’s postcondition. Our project uses
logic explicitly modeled after JContractor to provide runtime
guarantees.

Bounded Exhaustive Testing (BET). Unit testing assures
robustness for software. Unfortunately, unit testing requires
additional developer effort. Not only must the code be written,
but tests must be written to exercise the code. BET tools
such as [6] automate unit test generation, ensuring code
coverage for bounded domain size. Korat generates all valid
objects within a bound and exhaustively calls public methods
with parameters satisfying method preconditions, checking
the resulting objects for validity. Validity is determined by
executing the class invariant. Our project uses Korat for test
case generation.

II. METHODS

Web Applications are specified via a UML model (class
diagrams) with OCL constraints. We define UML stereo-
types for Model, View, Controller, and Page classes. These
can be exported via the UML XML Metadata Interchange
(XMI). These are parsed and translated into a smaller XML
representation that is both used by our tool and developer-
friendly (all test cases are manually generated in this format).
This XML format is used to generate a model of a web
application. The model, called a Project, internally represents
Models, Controllers, Views, Routes, and specific resources for
deployment on Google AppEngine.

The Project can generate a set of Alloy Analyzer test
scripts. These test scripts help check consistency of the OCL
specifications, but also can check whether a bounded verifi-
cation check of a constraint can hold (any OCL constraint
can be generated as a fact, a predicate, or a check in the
Alloy scripts). This allows for analysis of the design prior
to implementation. However, there are OCL expressions that
do not translate easily into Alloy. For simplicity’s sake, we
translate expressions using propositional logical operators, first
order quantifiers, and equality operators. We issue warnings
on general iteration, temporary variable assignment, and side-
effect expressions.

For all OCL, we generate Java methods which are used as
preconditions, postconditions, and invariants in the generated
J2EE web application. For the purpose of generating Java
code, iteration and temporary variables are not a problem.

Java contracts also are used to reduce the burden of unit
testing. Korat test suites are generated for Bounded Exhaustive

33

Testing. This helps protect the application against regression
during implementation but before deployment (the tests run in
a local environment).

III. APPLICATION RESTRICTIONS

Restricting the application domain to Model-View-
Controller web applications running on Google AppEngine
provides many benefits in terms of the expressiveness of our
specifications. Additional semantics are assumed for common
field and method naming conventions. Application robustness
features are provided by construction due to additional restric-
tions and assumptions.

To help reduce the burden on the programmer, we provide
some high-level modeling constructs that are common in MVC
applications. HasMany, BelongsTo, HasAndBelongsToMany
automate relationships and their associated implementation
fields, the retrieval via queries, and navigation between related
objects in the generated user interface.

MVC shrinks analysis scope to manageable size. Models
and their relationships are analyzed independently from the
rest of the system (similar to [1]). Controllers are analyzed
independent of other Controllers with their associated models
and their dependencies.

We assume that all Models support CRUD operations. The
semantics of the operations are automatically assumed unless
overridden. This reduces the size of the specification and
simplifies analysis of the design for the common case.

Restricting to AppEngine trivially invalidates SQL injection
attacks as a threat (SQL is not supported). An analogous in-
jection attack for JDOQL is automatically protected against by
using only the single-token builder API for JDO queries. The
builder pattern properly escapes all inputs by only accepting
a single token at a time. The builder API is as expressive
as the general String version of the API (though neither are
relationally complete when running on AppEngine), which is
susceptible to injection attacks. Use of the general String API
will raise a critical warning prior to deployment (the class files
are analyzed for use of unsafe methods).

IV. BRIEF SKETCH OF USE CASES

Several applications have been built from specifications. A
magic 8-ball, specified in 15 lines of xml, provides random
answers to questions. A blogging application tied to Google
user accounts was generated from 21 lines of code for the
purpose of demonstrating the orphan record problem and its
solution at design time. A polling/questionaire application was
specified in 38 lines. One was an invariant to enforce that each
user could only vote once (line-breaks not in original):

Response.allInstances->forAll(r |
r.facebookUser=self.facebookUser
implies r=self)

The second was a shortcut for application navigation:

self.option.question.poll = self.poll

That compact specification of 38 lines generates a web
application with about 1000 lines of java code for Models and
Controllers and another 1000 lines of jsp code for Views. It
also generated a 65 line Alloy script for analysis. The resulting
application runs on Google AppEngine and will ultimately
be run as a Facebook application, changing only the View
code. Runtime validation guarantees that no user can vote in
a poll more than once, and Korat testing helps ensure correct
implementation before deployment.

V. CONCLUSIONS

Using a compact specification language as a high-level do-
main specific language for model-driven development enables
the development of more robust web applications with a net
reduction in programmer effort compared to simply using a
web application framework. Further restricting the deployment
environment can provide large gains in productivity at the
expense of limiting the applicability of a tool. However, with
over 200,000 active applications deployed on AppEngine, this
still presents a significant number of users for even a restricted
tool.

REFERENCES

[1] J. Nijjar and T. Bultan, “Bounded Verification of Ruby on Rails Data
Models,” in International Symposium on Software Testing and Analysis,
July 2011.

[2] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[3] F. Chang, “Generation of policy-rich websites from declarative models,”
Ph.D. dissertation, MIT, Cambridge, Massachusetts, February 2009.

[4] M. Karaorman and P. Abercrombie, “jContractor: Introducing Design-
by-Contract to Java Using Reflective Bytecode Instrumentation,” Formal
Methods in System Design, vol. 27, no. 3, pp. 275–312, November 2005.

[5] “Contracts for Java,” http://code.google.com/p/cofoja/.
[6] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated testing

based on java predicates,” in International Symposium on Software Testing
and Analysis, 2002, pp. 123–133.

34

EVILSEED: A Guided Approach to Finding
Malicious Web Pages

Luca Invernizzi
UC Santa Barbara

Santa Barbara, CA, USA
invernizzi@cs.ucsb.edu

Stefano Benvenuti
University of Genova

Genova, Italy
ste.benve86@gmail.com

Marco Cova
University of Birmingham

Birmingham, UK
m.cova@cs.bham.ac.uk

Paolo Milani Comparetti
Vienna Univ. of Technology

Vienna, Austria
pmilani@seclab.tuwien.ac.at

Christopher Kruegel
UC Santa Barbara

Santa Barbara, CA, USA
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara

Santa Barbara, CA, USA
vigna@cs.ucsb.edu

The web has become the medium of choice for people
to search for information, conduct business, and enjoy en-
tertainment. At the same time, the web has also become
the primary platform used by miscreants to attack users.
These attacks can either exploit vulnerabilities in the users’
web browser, or use social engineering to trick victims into
installing malicious software. The web is a very large place,
and new pages (both legitimate and malicious) are added at a
daunting pace. Attackers relentlessly scan for vulnerable hosts
that can be exploited, they create millions of fake pages and
connect them into sophisticated, malicious meshes, and they
abuse stolen accounts to break into hosting providers to inject
malicious code into legitimate web sites. As a result, it is a
challenging task to identify malicious pages as they appear
on the web, in order to protect web users. For example, one
can leverage information about web pages that compromise
visitors to create blacklists. Blacklists prevent users from
accessing malicious content in the first place, and they have
become a popular defense solution that is supported by all
major browsers. Moreover, the ability to quickly find malicious
pages is necessary for vendors of anti-virus (AV) products
who need to timely obtain newly released malware samples to
update their signature databases.

Searching for malicious web pages is a three-step process:
First, one has to collect pointers to web pages (URLs) that are
live on the Internet. This is typically done via web crawlers.
The purpose of the second step is to filter these URLs for
subsequent, detailed analysis. The number of pages discovered
by a crawler might be too large to allow for in-depth analysis.
Thus, one requires a fast, but possibly imprecise, prefilter to
quickly discard pages that are almost certain to be legitimate.
For the third step, we require detection systems that can
determine with high accuracy whether a web page is malicious.
To this end, researchers have introduced honeyclients. Some
of these systems use static and/or dynamic analysis techniques
to examine the HTML content of a page as well as its
active elements, such as client-side scripting code (typically
JavaScript scripts or Java applets). The idea is to look for
signs of well-known exploits or anomalous activity associated

with attacks [?]. Other detection systems look for changes to
the persistent state of the operating system once a page has
been loaded (such as additional files or processes) [?]. These
changes often occur as a result of a successful exploit and the
subsequent execution of a malware binary.

The resources for identifying malicious pages are neither
infinite nor free. Thus, it is essential to perform this search
in an efficient way and to optimize the process so that we
can find as many malicious pages as possible in a fixed
amount of time. In this paper, we propose an approach that
improves the efficiency of the first step of the search process.
More precisely, we propose a system, called EVILSEED, which
complements the (essentially random) web crawling approach
with a guided search for malicious URLs. EVILSEED starts
from a set of known pages that are involved in malicious
activities. This set contains malicious pages that were directly
set up by cybercriminals to host drive-by download exploits or
scam pages. The set also includes legitimate pages that were
compromised and, as a result, unknowingly expose users to
malicious code or redirect visitors to dedicated attack pages.
In the next step, EVILSEED searches the web for pages that
share certain similarities with the known malicious pages.
Of course, these searches are not guaranteed to return only
malicious pages. Thus, it is still necessary to analyze the search
results with both prefilters and honeyclients. However, the key
advantage of our approach is that a result of our guided search
is much more likely to be malicious than a web page found by
a random crawler. Thus, given a fixed amount of resources,
our approach allows us to find more malicious pages, and we
do so quicker.

The general architecture of EVILSEED is shown in Figure 1.
The core of our system is a set of gadgets. These gadgets
consume a feed of web pages that have been previously
identified as malicious (as well as other data feeds, such as
DNS traffic). Based on their input, the gadgets generate queries
to search engines. The results returned by the search engines
are then forwarded to an (existing) analysis infrastructure. In
the current implementation of EVILSEED, the honeyclient con-
sists of three components: Google’s Safe Browsing blacklist,

35

Fig. 1. EVILSEED overview.

Wepawet [?], and a custom-built tool to detect sites that host
fake AV tools.

We have implemented four gadgets. The links gadget lever-
ages the web topology (web graph) to find pages that link
to several malicious resources. In our experience, these pages
can be grouped in two categories: vulnerable sites that have
been infected multiple times (this is typical, for example, of
unmaintained web applications), and pages that catalog (and
link to) web malware (this is the case of certain malware
discussion forums, such as malwareurl.com). The content
dorks gadget aims at discovering vulnerable and exploited
web applications that contain the same word n-grams or
relevant keywords, based on examples from the seeds. For
example, “powered by PhpBB 2.0.15” indicates that a website
can be easily compromised, and “calendar about pregnancy“
is a query that returns pages that are part of the same
injection campaign about pharmaceutical products. The SEO
gadget identifies pages that belong to blackhat Search Engine
Optimization campaigns, crawling the whole campaign. These
pages can be identified because they present a different content
to search engines spiders, and exploitable browsers. The DNS
queries gadget analyzes traces of DNS requests to locate pages
that lead to a domain serving malicious content. Typically,
users reach the malicious domain via a chain of redirections
that starts from a legitimate website. By looking at the series
of DNS requests coming from an host that visits a known
malicious domain, we discover the exploited benign site at
the beginning of the chain.

We evaluated our gadgets both offline, using a known set
of malicious pages (Table I), and online, in a feedback loop
with a live Wepawet instance, using as seed the pages that
Wepawet recognized as malicious (Table II, as in Figure 1).
Our results show that EVILSEED is able to retrieve a set of
candidate web pages that contains a much higher percentage of
malicious web pages, when compared to a random crawl of the
web. Therefore, by using EVILSEED, it is possible to improve
the effectiveness of the malicious page discovery process.

Source Seed Visited Malicious Toxicity Expansion

EVILSEED
Links 1,440 169,928 2,618 1.541% 1.818
SEO 248 12,063 11,384 94.371% 45.903
DNS queries 115 4,820 171 3.548% 1.487
Content Dorks 443 76,254 1,314 1.723% 2.966

Total 263,065 15,487 5.887%

Crawler 791,975 1,094 0.138%

Random Search 24,973 76 0.303%

Google Dorks 4,506 17 0.377%

TABLE I
PERFORMANCE OF INDIVIDUAL GADGETS.

Source Visited Malicious Toxicity

EVILSEED
Content Dorks

n-grams selection 42,886 924 2.155%
term extraction 3,977 156 3.923%

Links 246 33 13.415%
EVILSEED (Total) 47,109 1,113 2.363%

Crawler 433,672 274 0.063%

TABLE II
EVILSEED IN ONLINE MODE AND CRAWLING.

36

The Phantom Anonymity Protocol
Johannes Schlumberger§, Magnus Bråding and Amir Houmansadr‡

§University of California, Santa Barbara js@cs.ucsb.edu
magnus.brading@fortego.se

‡University of Illinois at Urbana-Champaign ahouman2@uiuc.edu

Abstract—To address known issues with today’s anonymity
networks (such as scalability, performance and ease-of-use), we
propose a set of design goals for a new, decentralized and
scalable anonymity network that we call the Phantom anonymity
protocol. Based on the proposed design goals we developed
and implemented a protocol aimed at easy user adoption, low
latency and high throughput. Our design is fully IP compatible,
decentralized, easy to use and has no single prominent point to
be targeted by legal or technical attacks.

I. INTRODUCTION AND MOTIVATION

In recent years, there has been a massive upswing in surveil-
lance and censorship laws across many states and nations,
following the fear of terrorist attacks or similar threats. To
counter these risks to personal freedom and privacy, several
anonymous communication networks such as Tor [1] and
I2P [2] have been proposed, which enable anonymous com-
munication through the Internet. In particular those services
are important for whistleblowers, citizens of states with heavy
censorship laws and typical Internet users that aim to keep
their activities private. We believe most of the Internet users
would choose to protect their privacy, given the chance to do
so without taking big performance penalties.

Unfortunately, the existing anonymous networks are subject
to different attacks that try to compromise their anonymity
promises or availability. Examples of such attacks are traffic
analysis [3], [4], [5] or denial of service attempts [6], [7].

Moreover, various lawsuits have been leveraged against peo-
ple involved in these networks, which shows that a successful
anonymous network has to tackle some non-technical issues
as well.

Previous solutions either fail at being easily usable for non-
technical users or do not provide good throughput. Also due
to their complicated usage, they are not widely implemented
within the Internet.

We propose a new anonymity protocol, Phantom, that is
specifically designed as a protocol to overcome the weaknesses
of its predecessors, providing regular Internet users with
anonymity, being transparent to use for different applications
and being highly scalable.

II. DESIGN GOALS

In this section we state the design goals for the Phantom
anonymity protocol.

Complete decentralization: A centralized anonymous
network is fragile to attacks on its central part and does not
scale with the number of users.

Resistance to denial of service (DoS) attacks: Resisting
different DoS attacks that try to exhaust its resources is
necessary for anonymous networks to serve its users.

Provable anonymity: The security of the anonymity
provided by the network should be rigorously proven.

Confidential communication: An anonymous network
should guarantee the communication confidentiality of its
users by deploying end-to-end encryption.

Isolation from the Internet: To protect the deploying
nodes against legal actions, an anonymous network should
be isolated from the Internet. However, some nodes can act
similar to Tor-exit-nodes to access content on the Internet.

Protection against protocol identification: A protocol
must not be easily identifiable from the outside, so no one
can easily and selectively drop the protocol traffic.

High throughput capacity: Any network should provide
a high throughput to its users.

Generic, well-abstracted and backward compatible de-
sign: A backward compatible design makes it easier for a new
protocol to be used with already existing applications, greatly
boosting the acceptance rate and variety of services offered
over the protocol.

III. HIGH LEVEL SKETCH OF THE PROTOCOL

Having described our design goals we give an overview of
the Phantom protocol abstraction used to achieve these goals.
The protocol overview given here is extremely high level, a
reader interested in technical detail can find more such on the
project web page [8], [9], [10].

The Phantom anonymity network is a completely novel
overlay network, where nodes relay traffic for each other
in a peer-to-peer manner and store data in a distributed
hash table (DHT). Anonymized nodes communicate with each
other through proxy nodes forwarding IP-traffic, making the
protocol fully transparent to all existing applications.

The Phantom protocol abstraction consists of three logical
parts. First, long lived routing paths, which can be seen
as a chain of nodes relaying incoming and outgoing traffic
to and from an anonymized node, with a designated entry
or exit node acting as a proxy for incoming or outgoing
requests concerning the anonymized node. Second, shorter
lived routing tunnels, which form the logical equivalence of
a point to point connection. Third, a DHT, containing various
pieces of information, such as public keys of the participants
and information about the current entry nodes for a given
anonymized node offering a service.

37

routing path
node

anonymized
node
long-lived
routing path

X

X

X

X

E

E

E

exit node

entry node

routing path
node

anonymized
node
long-lived
routing path

X

X

X

X

E

E

E

exit node

entry node

Anonymized nodes with entry and exit routing paths (left)
communicating with each other using routing tunnels (right)

A routing path is the central anonymity concept of the
Phantom design. It consists of a number of nodes relaying
traffic for an anonymized node. The main purpose of a routing
path is to decouple an anonymized node from its IP address
and replace it by a fully compatible AP (Anonymous Protocol)
address. An AP address is just like an IP address in many
ways, but the person communicating using this AP cannot be
deduced from it.

Routing tunnels, initiated by an anonymized node control-
ling an exit routing path, are used to communicate between two
Phantom nodes. They are logically constructed along routing
paths. A finished routing tunnel consists of the nodes forming
the entry and the exit routing path of two communication
endpoints. Once established, the tunnel can be seen as a
bidirectional point-to-point connection between two network
participants enabling them to exchange arbitrary data over it.
This connection is used to transmit an onion-encrypted IP-
datagram stream between the two communication endpoints.

A DHT is used to store all the information needed by the
protocol. This information must include, at least, a mapping
that makes it possible to get the entry nodes for an AP address
and information describing other Phantom nodes, specifically
their IP addresses and ports along with some cryptographic
keys. By using a DHT instead of a central storage for this
information, we eliminate every central point of authority and
control in the network and keep it scalable.

If a node wants to participate, he first joins the DHT,
retrieves information about other nodes from it and uses these
to construct a routing path under his control. He then uses
his routing path to receive incoming and establish outgoing
connections to IP-based services offered by other Phantom
nodes.

IV. IMPLEMENTATION

A prototype implementation of Phantom is publicly
available[8], consisting of the full routing path and tunnel
logic. It is based on a kademlia[11]-like DHT design and
usable on a Linux operating system.

V. EVALUATION

To show that our implementation meets the criteria for low
latency and high throughput, we ran a set of experiments [9]

on a test network. The time to create a routing path of length
three is roughly three seconds on middle class machines; these
measurements do not take churn into account which.

To test the throughput of a tunnel between two Phantom
nodes, we copied several large files via scp. The throughput
achieved was very close to the theoretical throughput limit
of the underlying 100Mbit network, which shows that the
overhead introduced through cryptographic operations is easily
bearable on today’s machines and the protocol itself adds only
very small overhead on the wire.

VI. ISSUES

The protocol design is as of today a work in progress and
such has some unresolved issues, that we are still working on.

A new DHT needs to be designed that avoids information
leakage common to all current designs used in other protocols.
Depending on the new design of the DHT, defense mecha-
nisms against Sybil, predecessor and DoS attacks need to be
carefully chosen.

To evaluate our design further with respect to the effect of
churn, usability and resistance against aforementioned attacks,
we plan to set up a reasonably sized real world test network to
collect data that allows comparison with previous approaches.

VII. CONCLUSIONS AND FUTURE WORK

Analyzing existing anonymous networks and the growing
need for anonymity in modern societies, we have developed
a set of design goals for a new overlay network protocol
that is easy to use, decentralized and fast. Based on these
goals, we designed a novel anonymity network protocol. By
implementing the design, we have shown that it is feasible and
our evaluation measurements indicate the high-throughput and
low latency goals are met.

Future work should concentrate on improving our imple-
mentation and expanding the design to address the unresolved
issues discussed above.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13 th Usenix Security
Symposium, 2004.

[2] T. Schweyer, http://www.i2p2.de/.
[3] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in

Proceedings of the 2005 IEEE Symposium on Security and Privacy.
IEEE CS, 2005, pp. 183–195.

[4] A. Houmansadr and N. Borisov, “Swirl: A scalable watermark to detect
correlated,” in Proceedings of the 18th Annual Network & Distributed
System Security Symposium, 2011.

[5] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack
on low-latency anonymous communication systems.”

[6] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security?” in Proceedings of the 14th ACM conference on
Computer and communications security, ser. CCS ’07, 2007, pp. 92–102.

[7] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical congestion
attack on tor using long paths,” 2010.

[8] J. Schlumberger and M. Bråding, http://code.google.com/p/phantom/.
[9] J. Schlumberger, “Implementing the phantom protocol,” http://wwwcip.

cs.fau.de/∼spjsschl/da.pdf, 2010.
[10] M. Bråding, “The phantom protocol,” http://www.magnusbrading.com/

phantom/phantom-design-paper.pdf, 2008.
[11] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” in IPTPS ’01: Revised Papers
from the First International Workshop on Peer-to-Peer Systems, 2002,
pp. 53–65.

38

A Framework for Modeling Trust
in Collaborative Ontologies

Byungkyu Kang, John O’Donovan, Tobias Höllerer
Department of Computer Science

University of California, Santa Barbara
{bkang, jod, holl}@cs.ucsb.edu

I. INTRODUCTION

At the heart of both social and semantic web paradigms is
the support for any user to become an information provider.
While this has huge benefits in terms of the scope of in-
formation available, it raises two important problems: firstly,
the well researched problem of information overload, and
secondly, the problem of assigning trustworthiness to a piece
of information, or an information source. Given the small
window of information available for us to make decisions
about trust on the web, relative to real-world trust decisions,
this becomes a challenging problem. This paper presents a
framework for harnessing available information in the domain
of collaborative/shared ontologies on the Semantic Web.

In this paper we distinguish between semantic data that is
personally created, and data that has been pulled out of public
database or other shared resource. Various semantic databases
currently exist. some of which are integrated into a single
database network, such as DBpedia for example. DBpedia is
based on structured information from the Wikipedia dataset,
and supports complex relational queries over its contents. As
of January 2011, this database contains more than 3.5 million
entries, out of which 1.67 million are classified in a consistent
ontology [2]. DBpedia is a good representative example of how
credibility can play an important role in the Semantic Web.
It is inevitable that when anonymous data is derived from a
massive data set, errors and inconsistencies, whether malicious
or otherwise will begin to manifest. This problem is worsened
in cases where there are large amounts of data and provenance
is difficult to source. To address this class of problems, this
paper describes initial steps towards a framework for modeling
trust in shared ontologies. The model incorporates elements of
contextual relevance to a query or task, global reputation of a
data source and history of previous interactions between the
information producer and consumer.

II. COLLABORATIVE ONTOLOGIES

In general, a web ontology is created by a group of people
who share the same notion or idea. Accordingly, we propose
a cloud based collaborative ontology which can be freely
updated or modified by any client in a network. Our system is
based on a voting mechanism and each client has permissions
to assert ontological information as well as to provide ratings
of previously updated ontological entry into the semantic
cloud. Once an assertion has been made into the cloud by
any client, this affects all the other users of the system. Fig
1 provides a high level overview of the system, focusing on
its role in the semantic web cloud network. When ontological
data is thought of in a collaborative context, it is crucial to

Fig. 1. Collaborative Ontology Network with Multiple Clients

consider factors of trust and provenance of shared information
prior to integration with local ontologies. As Huang and Fox
[5] claim, “borrowed data should be trustworthy in order to
yield reliable information using it”.

III. TRUST, CREDIBILITY AND EXPERTISE

In this paper, we adopt three major variables–Trust, Credi-
bility and Expertise– to show three different reliability metrics.
These variables are used in the mathematical model in the
following section to calculate what we term the Assertion
Weight Model. A Trust variable represents an average value
of interpersonal credibilities between two clients based on
a history of their previous communications. The previous
communication can be referred as a directional reference such
as following or retweeting in the Twitter network. For example,
client Ci and client Cj may have ranked multiple scores
to each other if both clients had asserted more than one
ontological information such as triple into the server(cloud).
The notation for trust from client Ci to Client Cj can be
expressed as in Equation 1 below. n in this following equation
represents total number of ranks or communications made by
client Ci as to the entries created by client Cj .

Tij =
ΣnTijn
n

(1)

Note that Tij are not commutatative since client Ci is a
rater and client Cj is ontology information creator due to
directional voting mechanism.

While the Trust Tij represents interclient reliability, We
view credibility as a more global “reputation-like” concept,
representing an overall evaluation of a client based on a
composition of individual trust values. This variable can be
expressed as follows.

39

Credj =
Σn[

ΣiTijn

i]

n
(2)

To calculate the credibility that client Cj has, we assume
that a client Cj has created n ontological entries in the network
and each entry has i scores ranked by different i clients.

We define expertise as third factor used in our model to
assess the weight of an information source. Expertise is related
to the contextual relevance of an information source to some
target information task, based on analysis of content, for ex-
ample TFIDF, LDA or other statistical text based comparison
metric.

Ejk = sjk + ojk (3)

Note that Ejk is the expertise of the Clientj(creator) on
his/her k − th ontological information. sjk and ojk stand for
the number of entries(triplets) this client created before which
contains the same subject or object of selected ontology entry
Ontjk.

IV. ASSERTION WEIGHT MODEL

As each client of the system ranks relevant scores on
the previous ontological entries created by other clients, the
system updates an Assertion Weight Model in the ontology
cloud. In this section, we explain the Assertion Weight Model.
Mathematical notations for the Assertion Weight Model W on
the item k is as follows.

Wk = f(Ejk, Tij , Credj) (4)

where the weight model funtion f() is,

f(Ejk, Tij , Credj) = αEjk + βTij + γCredj (5)

α+ β + γ = 1 (6)

Note that the three coefficients – α, β, γ, respectively –
represent contribution weight coefficients which can be defined
based on a particular learning or optimization function, a next
step on this research agenda.

Our Assertion Weight Model can be explicitly distinguished
from previous literatures such as Gil, et al. [3] and Golbeck, et
al. [4] since these literatures propose trust semantic network
in the scope of social network setting. In other words, they
describe trust of the semantic web based on the users or agents.
On the contrary, our model describes more as a collaborative
tool in cloud computing like environment based on individual
ontologies. Another benefit of our framework is that this model
can be utilized in any form of expression(RDF, RDFS, OWL,
and so on) with different types of database(RDB, TDB, SDB,
and so on). Figure 2 shows a visualization of trusted informa-
tion sources in the collaborative ontology. The visualization
was generated using the WiGis toolkit (www.wigis.net).

V. PRELIMINARY EXPERIMENTS

To evaluate our model, we propose to conduct a preliminary
experiment based on integration of data from multiple sources,
with a mechanism for eliciting feedback on information from a
community of users. Jena is a Java-based open source semantic
web toolkit. It supports most ontology languages with several
different rule-base reasoners, SPARQL query support and
several persistent graph stores. SDB is a component of Jena

Fig. 2. Visualization Example of Semantic Credibilities using WiGis
Framework

toolkit and this unique database has the ability to easily parse
SPARQL query between Jena API and semantic database.

In this early stage of research, a specific testbed for eval-
uation has not been targeted, however, the evaluation will
combine facets from different ontologies using the standard
JENA triple-store model and they will be accessed through
the JENA API, in keeping with W3C standards.

VI. CONCLUSION

A novel framework for modeling trust in collaborative
ontologies was presented in this paper. The model is based on
three trust-based weightings for information providers in col-
laborative ontologies: Global reputation of a source, history of
interactions between an information producer and consumer,
and contextual relevance of a source to a particular target task.
In addition we have proposed a visual interface for eliciting
feedback from users by putting them “in the computational
loop” through simple interactive visual feedback mechanisms.
We believe that as the semantic web expands and becomes
more widely used, the need for such reliable mechanisms for
computing credibility and trust of the information providers
increases therein.

REFERENCES

[1] Berners-Lee, Tim; James Hendler and Ora Lassila (May 17, 2001).
”The Semantic Web”. Scientific American Magazine. Retrieved March
26, 2008.

[2] http://wiki.dbpedia.org/Datasets, 2. Content of the DBpedia Data Set
[3] Yolanda Gil, Varun Ratnakar. Feb 25, 2009 - Trusting Information Sources

One Citizen at a Time,
International Semantic Web Conference pp.162-176, 2002

[4] Golbeck, Jennifer, Bijan Parsia, James Hendler, ”Trust Networks on the
Semantic Web,” Proceedings of the Seventh International Workshop on
Cooperative Information Agents, August 2003, Helsinki, Finland.

[5] J. Huang and M. S. Fox. An ontology of trust - formal semantics and
transitivity. In Proceedings of The Eighth International Conference on
Electronic Commerce, pages 259-270. ACM, 2006.

[6] B. Gretarsson, S. Bostandjiev, J. O’Donovan, and T. Höllerer. ”WiGis:
A Framework for Web-based Interactive Graph Visualizations.” (Interna-
tional Symposium on Graph Drawing 2009, Chicago, USA)

40

SIGMA: A Statistical Interface for Graph
Manipulation and Analysis

Greg Meyer, Brynjar Gretarsson, Svetlin Bostandjiev, John O’Donovan, Tobias Höllerer

Department of Computer Science, University of California, Santa Barbara
meyer.greg.pro@gmail.com, {brynjar,alex,jod,holl}@cs.ucsb.edu

Abstract—In this paper, we present a statistical approach for
gaining deep understanding of a graph visualization. The ap-
proach follows Shneiderman’s vision that “visualizations simplify
the statistical results, facilitating sense-making and discovery
of features such as distributions, patterns, trends, gaps and
outliers.”[3]. Thus, the addition of statistical metrics within a
graph visualization tool efficiently improves exploratory data
analysis and allow analysts to discover new interesting relation-
ships between entities. In addition, we believe that a statistical
interface can play a role as a navigation control for a large graph
visualization. This paper presents a discussion of design and
implementation of the SIGMA statistics visualization module for
WiGis [2], and example use cases showing how statistical views
help to increase a user’s understanding of graph visualizations.

I. INTRODUCTION

With the advancement of rich internet technologies, and
explosion of network data available on the web, interactive
graphs are becoming more common as a means to explore,
navigate and understand network data. However, scalability of
these tools remains a weak point for most existing systems. For
node-link graphs of more than a few hundred connected en-
tities, most client-side graph visualization tools begin to slow
down considerably. Usually network visualization tools use
layout or clustering algorithms in order to clarify a chaotic vi-
sualization. However, this approach traditionally does not scale
well. Now that the need for statistical graph representation has
been motivated, we provide a brief discussion of related work
and describe the design challenges and implementation choices
used in the development of the SIGMA statistical interface.

A. Statistics in Graph Visualizations
Graph visualization tools abound, some popular exam-

ples include TouchGraph Navigator [5], Tom Sawyer [4] ,
GraphDice [1], and IBM’s ManyEyes. These tools base their
principal functionalities either on network visualization or sta-
tistical analysis but still do not support visualization of a broad
scope of statistical functions in an interactive manner. Our
novel statistical viewer and navigator, SIGMA, is implemented
as a module for our existing graph visualization toolkit known
as WiGis [2]. SIGMA is focused on the coupling of statistical
views and node-link representations of data. WiGis was chosen
as a supporting platform for this work because it has a mod-
ular design, making plug-in development easy. Addition of a
statistics module supports novel research involving interactive
analysis of large scale data, graph comparisons, classification
and decomposition.

By enabling statistical analysis and control in a graph visual-
ization tool such WiGis, we aim to provide a user with a rapid
overview of data contained in a graph. Moreover, the goal is to

highlight important components, nodes, edges or relationships,
and anomalies that are not obvious in the traditional network
view. Statistics allow for simplification/abstraction of a view,
which can then support on-demand dynamic focus based
on simple interactions, such as moving, deleting, clustering,
zooming or running various algorithms to give the user a
deeper understanding of the underlying data.

B. SIGMA Module
There is a huge variety of statistical analysis methods

that can support graph analysis. In this initial work, we
categorized candidate statistical methods into four groups to
better organize the analytical process for the end user as they
interact with a graph visualization. A Global statistics panel
persists in every view, containing statistical metrics that apply
to the entire graph. If two nodes are selected, a Pairwise panel
appears containing metrics related to the selected node pair,
such as Dijkstra’s shortest path algorithm, for instance. Upon
selection of a group of nodes, a SubGraph panel, gathering
statistics for all selected nodes appears in the view. Similarly,
when a single node is selected, a Node panel appears, giving
statistical metrics for the current node. The following list
describes the currently implemented statistics in the module
:

1) Global Statistics:
• Size: Information about graph size in terms of nodes, edges and content.
• Components: Listing of distinct components.
• Node Types: List and number of nodes for each different type.
• Degree Distribution: Shows an interactive chart of degree distribution for the entire

graph.
• Average Path Length: Average length over all paths.
• Average Degree Centrality: Average degree over all nodes.
• Average In-Out Degree (only for directed graphs): Average number of in and out

degree over all nodes.
2) Subgraph Statistics:

• Average Path Length: Average path length of the selected nodes.
• Average Degree Centrality: Average degree over all selected nodes.
• Degree Distribution: Presents a real-time degree distribution chart over all selected

nodes.
3) Pairwise Statistics:
• Shortest Path Distance: Minimum hops number between two nodes (Shortest Path

highlighted on the graph).
4) Node Statistics:
• Degree: Node’s degree.
• Neighbors: List of all neighbors for a selected node.
• In-Degree (only for directed nodes): Number of in-coming edges.
• Out-Degree (only for directed nodes): Number of out-coming edges.

II. USE CASES

Since this work is in an early stage, a full live user
evaluation is not yet available. To motivate our approach,
two practical use cases from different domains are presented
here. Each case describes a concrete example of the statistical

41

viewer supporting discovery of previously hidden information,
not easily detectable though the standard graph visualization
interface.

A. NSF Dataset

Fig. 1. Use of Graph statistics panel to discover isolated graph components

Figure 1 shows a visualization of a collection of awarded
NSF grant proposals, showing the documents and topics that
they relate to, based on Latent Dirichlet Analysis (LDA)
modeling over their contents. The initial view shows the full
graph. By clicking on elements in the Graph statistics panel,
a user can quickly distinguish separate components that were
previously hidden. With this feature, it is also possible to click
on a disconnected component to highlight each of that node’s
neighbors, and reveal its graph position. When this occurs,
statistical metrics such as the degree distribution chart shown
in Figure 1 are automatically recomputed.

B. New York Times Dataset
Figure 2 shows a similar network of documents and topics

from LDA analysis, in this case, a collection of New York
Times news articles. A user selects a pair of nodes at random
and the Pairwise panel appears, showing algorithms related to
pairwise analysis. The user selects a shortest path algorithm,
and in the main graph view, the set of shortest paths between
the two selected nodes are highlighted in red, as illustrated in
Figure 2. Figure 2 a.) and b.) shows a comparison between
two different interaction methods for finding the shortest
path between two nodes. In view a.), a user has selected
the node pair and dragged them to the right of the screen.
An interpolation-based layout moves all of the other nodes
by a relative amount in the same direction, based on their
graph distance from the moved node. The result highlights
the shortest path on the right side of Figure 2 a.). Note that
this view is specific to the two target nodes only, and all other
nodes become clustered based on their graph distance from

Fig. 2. Two different representations of a shortest path algorithm a.) WiGis
interpolation based view (pair-specific). b.) force-directed in a global view
using SIGMA.

the selected node pair. Contrastingly, the view in 2 b.) shows a
global force-directed layout of the graph, in which the shortest
path is highlighted between two nodes. This view was arrived
at simply by clicking on the button provided in the pairwise
statistics panel that appeared on selection of the two nodes.
Both views support shortest path analysis, but enable discovery
of very different information about the graph.

III. CONCLUSION

In this research abstract, we have discussed initial work on
SIGMA, a statistical analysis tool for the WiGis visualization
framework. Design details and two use cases on diverse data
sets have been presented. Application of statistical analysis
and navigation mechanisms to graph visualization tool such as
WiGis improves a users understanding of the underlying graph.
The SIGMA module allows a user to focus in on data that may
have otherwise remained hidden in a traditional visualization
such as force-directed node-link layout. In addition, the visu-
alization tool improves and simplifies the comprehension of
statistical metrics by allowing a user to see the results of a
statistical method appear on the graph.

REFERENCES

[1] Anastasia Bezerianos, Fanny Chevalier, Pierre Dragicevic, Niklas
Elmqvist, and Jean-Daniel Fekete. Graphdice: A system for exploring
multivariate social networks. Computer Graphics Forum (Proc. EuroVis
2010), 29(3):863–872, 2010.

[2] Brynjar Gretarsson, Svetlin Bostandjiev, John ODonovan, and Tobias
Höllerer. Wigis: A framework for scalable web-based interactive graph
visualizations. In David Eppstein and Emden Gansner, editors, Graph
Drawing, volume 5849 of Lecture Notes in Computer Science, pages
119–134. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-11805-
0-13.

[3] Adam Perer and Ben Shneiderman. Integrating statistics and visualization:
case studies of gaining clarity during exploratory data analysis. In
Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, CHI ’08, pages 265–274, New York, NY,
USA, 2008. ACM.

[4] Tom Sawyer Software. Tom Sawyer Visualization, 2009. Available at
www.tomsawyer.com.

[5] Touchgraph. Touchgraph llc, http://www.touchgraph.com, 2004.

42

Detecting Service Outages via Social Media
Analysis

Eriq Augustine, Cailin Cushing, Kim Paterson, Matt Tognetti, Alex Dekhtyar Department of Computer Science
Cal Poly, San Luis Obispo

{eaugusti, ccushing, klpaters, mtognett, dekhtyar}@calpoly.edu

Abstract—We consider the problem of anomaly detection
related to specific online services via analysis of social media
(Twitter) messages related to the service provider. Results of the
initial study are documented here.

Keywords-anomaly detection, data mining, classification

I. INTRODUCTION

It is frustrating for product owners and online service
providers who offer a product or service but sometimes do not
receive much feedback from their customers. The customers
may, in fact, be providing feedback, but the feedback is
frequently transmitted in a way that is not useful: it is sent
to the wrong receiver or to a receiver that is not looking for
it. Netflix recognizes that its customers are providing feedback
about their online streaming applications on social media sites,
but currently employs no sophisticated system for processing
that feedback. After Netflix sends a file to the customer, they
have limited capabilities for detecting if the users are having
problems receiving or viewing it. As a result, if a movie file
is corrupted or one of their channels is down, it may take
some time for Netflix to realize there is a problem. The time
delay between an error occurring and Netflix’s recognition and
response negatively affects their customers perception of the
company as a reliable service provide. Consequently, the faster
Netflix becomes aware of a problem, the more quickly they
can resolve it and maintain their reputation. To ensure error
detection happens quickly, Netflix needs to employ a reliable
listener than can process the feedback already available on the
social networking site Twitter.

Our work concentrates on tapping such feedback for the
purpose of detecting, in real time, the situations when Netflix
experiences service problems.

We decided to use Twitter as our primary source of user
feedback because Twitter is one of the more public social
networking sites, allowing almost everyone to view Twitter
posts or tweets. tweets are generated quickly and in a high
volume, providing us with a wealth of data to process. This
paper documents our initial progress in processing tweets for
anomaly detection.

II. CONTRIBUTIONS

We are studying whether it is possible to detect Netflix
service outages by analyzing Twitter traffic related to the
term ’Netflix.’ Anecdotal evidence (observations of Twitter
traffic during some such outages) suggests that some Netflix

customers report the problems they experience on Twitter
when streaming Netflix movies and shows. In our initial study,
we asked whether we could detect situations when the quantity
of such reports would significantly increase.

Tweets are set apart from traditional Internet documents
like articles and formal movie reviews because they are
limited to 140 characters for English tweets. This means that
each document is very short compared to articles and other
documents typically used in natural language processing, text
classification or information retrieval. Tweets also tend to use
informal language, containing deliberate typos, slang, SMS-
style abbreviations, and emoticons that carry significant mean-
ing. Informal language can contribute to greater ambiguity
in the meaning of phrases. Our challenge is to detect outage
reports under such conditions. In our initial study, described
here, we look at the ability of traditional text classification
techniques to do so.

III. EXPERIMENT

We collected every tweet mentioning the word ’Netflix’
from January 1, 2011 to June 1, 2011. For each tweet, in
addition to its text, we store the metadata provided by the
Twitter API, including the time it was posted. From these
messages, we randomly selected 800 to form a training set
of tweets.

By observing Netflix-related Twitter traffic, we determined
that there were, in general, two major reasons for significant
increases in the number of Netflix-related posts: a breaking
news story related to Netflix and a Netflix service outage. In
addition to these two types of traffic, Netflix-related Twitter
traffic included posts that specified which movies the posters
watched using Netflix, expressed joy/gratitude to Netflix, or
commented on someone else’s Netflix-related post. As such,
we chose to use three broad categories for Netflix-related
tweets:

• Media: news story-related tweets;
• Bad: service outage reports and general complaints;
• Other: regular Netflix-related chatter.

Each of the tweets from our training set was classified
manually into one of these three categories. We used the
training set to train a number of classifiers as described below.

We used three different ways of processing individual tweets
prior to submitting them to classifiers:

• No Filtering – the raw text was sent into the classifier
43

• Simple Filtering – stop words, non-English characters,
and punctuation were removed, and links were replaced
with a placeholder

• Full Filtering – simple filtering enhanced but with
movie/show title detection and replacement placeholders.

We used various off-the-shelf classifiers from the WEKA
machine learning package[?]. In this paper, we report on the
use of the Naı̈ve Bayes, Bayes Net and J48 classifiers[?].

In addition to those individual classifiers, we used a
“committee” classifier. The committee classifier used Simple-
Filtered and Full-Filtered version of Naive Bayes, Bayes
Net, and K-Nearest-Neighbors[?] classifiers. The Committe
classifier then chose the plurality class.

IV. RESULTS

Netflix provided us with the list of days and times between
January 1, 2011 and June 1, 2011, during which it experienced
various service outages related to video streaming for different
platforms, or web site availability.

In order to determine the accuracy of our classifiers, we
tagged any period of significant (beyond 3 standard deviations
from the mean) increase in Bad tweets as an indicator of a
Netflix service outage. We then compared our estimations to
the log of known outage times. Figure 1 depicts tweet volumes
during a known outage time. The green line is the volume of
all Netflix-related tweets. The red line is the number of tweets
in the “Bad” group as classified by the Committee classifier.

Fig. 1. Outage Period

Individually, our classifiers performed moderately well, de-
tecting about 57% of the known outages. The Committee clas-
sifier, however, produced excellent results; correctly catching
nearly 86% of the outages (Table I).

Classifier Percent Outages Caught
Bayes Net 57.14
Naive Bayes 57.14
J48 57.14
Committee 85.71

TABLE I
OUTAGE DETECTION RESULTS

In addition, the Committee classifier produced very few
false positives for Bad tweets, improving the accuracy and

confidence of its outage detection. Table II shows a confusion
matrix of the Committee classifier when ran on the training
set. “Bad” false positives are shown in red.

Media Bad Other
Media 97 0 6
Bad 2 187 111
Other 17 16 393

TABLE II
COMMITTEE CLASSIFICATION RESULTS

V. CONCLUSIONS

Our best classifier was able to obtain 85% accuracy. Another
experiment on classification of social media posts was done
by Sarah Schrauwen on the Dutch social networking website,
Netlog. Schrauwen was only able to obtain 65% accuracy
when trying to classify the valence (mood) of social media
posts[?]. Schrauwen dealt with data sets that had similar
restrictions and informal language. We believe that our work
is a good starting point.

VI. FUTURE WORK

In the future, we plan to incorporate methods that look at
the “valence” of words in the tweet. We use valence to mean
a numeric measure of the happiness of a word.

Filtering out the titles of movies and shows will also
improve results since movie and show titles like ”Death at a
funeral” or “System Crash” can easily throw off our classifiers.

We also intend to collect information about authors and use
it to weight their posts and improve accuracy.

REFERENCES

[1] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN,
P., AND WITTEN, I. H. The weka data mining software: an update.
SIGKDD Explor. Newsl. 11, 1 (2009), 10–18.

[2] SCHRAUWEN, S. Machine learning approaches to sentiment analysis
using the dutch netlog corpus. In Machine Learning Approaches to
Sentiment Analysis Using the Dutch Netlog Corpus (Antwerp, Belgium,
2010), CLiPS Technical Report Series, Computational Linguistics &
Psycholinguistics.

44

Chronology-Sensitive Hierarchical Clustering of
Pyrosequenced DNA Samples of E. coli

Aldrin Montana, Alex Dekhtyar
Computer Science Department

{amontana, dekhtyar}@calpoly.edu
Emily Neal, Michael Black, Chris Kitts

Biology Department
{erusch, ckitts, mblack}@calpoly.edu

California Polytechnic State University
San Luis Obispo, United States

Abstract—Hierarchical clustering is used in computational
biology to compare sequenced bacterial strain DNA and to
determine bacterial isolates that belong to the same strain.
However, at times, the results of the hierarchical clustering are
difficult to read and interpret. This paper is a case study for
the use of an improved hierarchical clustering algorithm, which
takes into account the underlying structure of the bacterial DNA
isolate collection to which it is applied.

Keywords-bioinformatics, clustering; pyrosequence; primer;
pyrogram;

I. I NTRODUCTION

E. coli is a common member of the mammalian and avian
intestinal microbiota, and is frequently used as an indicator
for fecal contamination in watersheds, lakes, beaches, and
recreational water. Because dangerous interspecific pathogens
can be transferred through contaminated water, it is necessary
for health agencies and environmental protection to be ableto
track the source of a fecal contamination at the species level.
The general process linking microbes (in this caseE. coli) to
a host source is called microbial source tracking (MST).

Our lab is currently developing a cost-effective and efficient
MST method to create DNA fingerprints for different strains
of E. coli. In a pilot study, this method was used to investigate
the variation inE. coli by utilizing sequence differences in the
23S rRNA - 5S rRNA Intergenic Transcribed Spacer (ITS)
region to distinguish betweenE. coli strains. This region is
non-coding and is assumed to accumulate more mutations
than regions of coding DNA. Assuming that ITS sequences
vary for different strains ofE. coli, generated patterns act as a
DNA fingerprint (or pyroprint) for each strain. In this paperwe
report on the use of traditional hierarchical clustering method
(primer5) and an improved method, sensitive to the structure
of the data collection under study to determine and trackE.
coli strains found in a human host over a period of time.

A. Pilot Study

Over a period of 14 days a fecal sample and two anal
swabs, one immediately following the collection of a fecal
sample, and one a few hours later, were collected from a single
human host (except on day 7). Up to four bacterial isolates per

sample were drawn, and bacterial cultures were grown from
each isolate for up to 12 bacterial isolates per day extracted
from the host.

B. Data Description

For each isolate, a mix of the 23S rRNA - 5S rRNA1 was
extracted and amplified using the traditional PCR process. The
intragenic region was thenpyrosequenced[1] and the obtained
pyrograms were compared to each other.

For the purposes of this paper, apyrogram is a sequence
of real numbers representing light intensities emitted during
the pyrosequencing process when a reagent for a specific
nucleotide (A, T, C or G) is introduced in the pyrosequencing
reaction. In our experiments, pyrograms of length 104 were
generated following the same dispensation sequence of nu-
cleotides for each bacterial isolate. Pearson correlationcoeffi-
cient was used as the similarity measure between pyrograms.
The goal of the study was to determine which bacterial isolates
belong to the same strain.

C. Primer5

Primer5 is a program that is capable of analyzing data in
many ways[2]. Primer5 is commonly used by biologists and
utilizes hierarchical clustering. Applied to theE. coli data
collected, Primer5 produced the output shown in Figure 1.
Hierarchical clustering works by iteratively combining clusters
until there is one cluster remaining[3]. This approach discounts
the context of the pilot study where the collected isolates were
organized by day in chronological order, and by the type of
sample within a single day. The output of Primer5 in such
situations is hard to read and organize.

II. CHRONOLOGY-SENSITIVE CLUSTERING

Our approach clusters the results of the study in a way
that takes into account the order in which the isolates were
collected. Intuitively, we want to change the order in which
a hierarchical clustering algorithm combines clusters. Inour

1These two genes and their intragenic region are found in theE. coli genome
in septuplicate.

45

Fig. 1. Primer5 Clustering Results

Fig. 2. Cluster 1

Fig. 3. Cluster 2

algorithm, clusters are first formed out of isolates collected on
the same day (and further subdivided by collection method),
and then are grown chronologically across days. Our algorithm
takes as input two parametersα > β representing similarity
thresholds. Pyrogram similarity scores above the valueα are
replaced with1 and are considered to be the same. Similarity
scores belowβ indicate that the two pyrograms are definitely
dissimilar; such scores are replaced with0. The similarity
score transformation is performed before hierarchical cluster-
ing commences.

A. Algorithm

Our clustering algorithm works as follows. Isolates collected
in the same day are clustered together, then single-day clusters
are combined in chronological order. When clustering isolates
in the same day, isolates are first clustered for each collection
method, then are combined across collection methods. For our
algorithm we use average link inter-cluster distance.

III. R ESULTS

Results of our study are shown in Figures 2, 3, 4. We used
threshold values ofα = 0.997 andβ = 0.95 provided to the
computer scientists by the biologists in the group. As seen
from the results, three key clusters were detected spanning
across multiple days; additionally, a significant number of

Fig. 4. Cluster 3

individual isolates (not depicted) on different days appeared
to represent completely separateE. Coli strains.

The largest cluster, Cluster 1, pictured in Figure 2 represents
a dominant strain that is seen on days 1 - 9. A second dominant
strain, pictured in Figure 3, appears around the time when
the host experienced uneasiness in the stomach. The host’s
ailment was reportedly most uncomfortable around days 9,
10, and 11. The presence and time at which these first two
dominant strains are seen seems to correspond to the host’s
experience. Figure 4 may indicate a third dominant strain
becoming established. However, as this cluster is seen in the
last three days of the experiment there is not enough data
to suggest anything conclusive. Additionally, a total of 17
pyroprints formed their own single-pyroprint clusters andan
additional two pyroprints formed another cluster.

IV. CONCLUSIONS ANDFUTURE WORK

The proposed algorithm produces a more intuitive hier-
archical cluster organization for biological data collections
possessing a distinct internal structure. This paper describes
briefly our pilot case study for the algorithm, which pro-
vided necessary insight into the data for the biologists. The
conceived algorithm is applicable to any data collection with
internal structure, but the current implementation is specific to
the pilot study described in the paper. Work is underway on
the development of a general version, and on applying it to
more biological studies.

REFERENCES

[1] R. M., “Pyrosequencing sheds light on dna sequencing,”Genome Re-
search, vol. 11, pp. 3 – 11, january 2001.

[2] K. Clarke, “Non-parametric multivariate analyses of changes in commu-
nity structure,”Australian Journal of Ecology, vol. 18, pp. 117 – 143,
1993.

[3] B. Liu, Web Data Mining-Exploring Hyperlinks, Contents, and Usage
Data. Springer, 2006.

46

Closest Pair and the Post Office Problem
for Stochastic Points

Pegah Kamousi Timothy M. Chan Subhash Suri

Abstract—Given a (master) set M of n points in d-dimensional
Euclidean space, consider drawing a random subset that includes
each point mi ∈ M with an independent probability pi. How
difficult is it to compute elementary statistics about the closest
pair of points in such a subset? We obtain hardness results and
approximation algorithms for stochastic problems of this kind.

I. INTRODUCTION

Many years ago, Knuth [2] posed the now classic post-office
problem, namely, given a set of points in the plane, find the one
closest to a query point q. This fundamental which arises as a
basic building block of numerous computational geometry al-
gorithms and data structures [1], is reasonably well-understood
in small dimensions. In this paper, we consider a stochastic
version of the problem in which each post office may be
closed with certain probability. A given set of points M in
d dimensions includes the locations of all the post offices but
on a typical day each post office mi ∈M is only open with an
independent probability pi. Therefore, given a query points q,
we ask for the expected distance from q to its closest neighbor
in M . Similarly we ask: how likely is it that the closest pair
of points are no more than ` apart? In this paper, we study
the complexity of such elementary proximity problems and
establish upper and lower bounds.

II. THE STOCHASTIC CLOSEST PAIR PROBLEM

The stochastic closest pair problem asks for the probability
that the closest pair has distance at most a given bound `.
We show that this basic problem is intractable, via reduction
from the problem of counting vertex covers in planar unit disk
graphs (UDGs). In order to show that even the bichromatic
closest pair problem is hard, we also prove that a correspond-
ing vertex cover counting problem is hard for a bichromatic
version of the unit disk graphs.

A. Counting Vertex Covers in Unit Disk Graphs

We first prove that the minimum vertex cover problem is
hard for planar unit disk graphs of maximum degree 3 using
which we then prove that counting the vertex covers is also
hard for 3-planar UDGs.

Lemma 2.1: The minimum vertex cover problem is NP-
hard for planar unit disk graphs of maximum degree 3.
We define the class of rectilinear unit disk graph as the unit
disk graph with maximum degree 3, which can be embedded
in the plane such that the length of each edge is ≥ 2/3, and
the edges lie on the integer grid lines.

We have the following corollary.

Corollary 2.2: The minimum vertex cover problem is NP-
hard for rectilinear unit disk graphs.

Theorem 2.3: It is NP-hard to count the vertex covers in
a rectilinear unit disk graph. Moreover, the number of vertex
covers cannot be approximated to any multiplicative factor in
polynomial time assuming P 6= NP.

Proof: We will prove the inapproximability, which shows
the hardness as well. Let G = (V,E) be a rectilinear UDG.
Suppose we have an α-approximation algorithm for counting
the vertex covers in G, i.e., if c(G) is the number of vertex
covers, the algorithm outputs a value c̃ such that (1/α)c(G) ≤
c̃ ≤ αc(G).

Let Gp be the stochastic graph obtained from G by assign-
ing the probability p = 1/(2nα2) of being present to each of
the nodes in G. Since this probability is the same for all the
nodes, an α-approximation algorithm for counting the vertex
covers in G readily provides an α-approximation algorithm
for computing the probability that a random subset of nodes
in Gp is a vertex cover. Let Pr(Gp) denote this probability,
and r̃ be an α-approximation to Pr(Gp).

The key observation is that r̃ ≥ pk if and only if G has
a vertex cover of size k or less. To see this, suppose G has
a vertex cover C of size k or less. Then the probability that
a random subset of nodes of Gp is a vertex cover is at least
pk, i.e., the probability that all the nodes in C are present.
In this case, r̃ ≥ pk/α. Otherwise, at least k + 1 nodes must
be present to constitute a vertex cover, which happens with
probability at most 2|V |pk+1 < pk/α2. In this case r̃ < pk/α.

Corollary 2.2, however, shows that the minimum vertex
cover problem is hard for G, and therefore Pr(Gp) cannot
be approximated to any factor α in polynomial time assuming
P 6= NP. This completes the proof.

B. Bichromatic Unit Disk Graphs

We introduce the class of bichromatic unit disk graphs as the
graphs defined over a set of points in the plane, each colored
as blue or red, with an edge between a red and a blue pair if
and only if their distance is ≤ 1. We will show that counting
the vertex covers is NP-hard for bichromatic UDGs. Consider
the gadget H in Fig. 1 (a), which consists of l paths between
u and v, for a given l. Let G = (V,E) be an instance of
a rectilinear UDG. Let G′ = (V ′, E′) be the graph obtained
from G by replacing each edge uv ∈ E with the graph H. We
color u, v and the bi’s red, and the remaining nodes blue.

Lemma 2.4: The graph G′ is a bichromatic unit disk graph.

Finally we arrive at the following theorem.
47

u v

a1 b1 c1

al bl cl

l copies

u v

w

l copies

u

v

w

a

l c
op

ies

Fig. 1. (a) The gadget H (b) Two orthogonal gadgets (c) Two rotated
gadgets.

Theorem 2.5: It is NP-hard to count the number of vertex
covers in a bichromatic unit disk graph even if the distances
are measured in the L∞ metric.

C. Complexity of the Stochastic Closest Pair

In a unit disk graph G = (V,E) defined over the full set M
of points, a random subset S of nodes is a vertex cover if and
only if in the complement of that subset, no two nodes are at
distance ≤ 1. (In other words, all the edges are covered by
S.) Therefore, computing the probability that a random subset
of nodes is a vertex cover in G amounts to computing the
probability that the closest pair of present points in a random
subset S are at distance > 1. But as discussed in Theorem 2.3,
counting the vertex covers in a unit disk graph is NP-hard.
Therefore we have the following theorem.

Theorem 2.6: Given a set M of points in the plane, where
each point mi ∈ M is present with probability pi, it is NP-
hard to compute the probability that the L2 or L∞ distance
between the closest pair is ≤ `.

The next theorem considers the bichromatic version of this
problem.

Theorem 2.7: Given a set R of red and a set B of blue
points in the plane, where each point is only present with
an independent, rational probability, it is NP-hard to compute
the probability that the closest L2 or L∞ distance between a
bichromatic pair of present points is less that a given value `.

III. LINEARLY SEPARABLE POINT SETS UNDER THE L∞
NORM

We also show that when the red points are linearly separable
from the blue points by a vertical or a horizontal line,
the stochastic bichromatic closest pair problem under L∞
distances can be solved in polynomial time using dynamic
programming.

Theorem 3.1: The stochastic bichromatic closest pair prob-
lem under L∞ norm can be solved in polynomial time when
the read and blue point are linearly separable.

Next Theorem considers the problem for d > 2.
Theorem 3.2: Given a set R of red and a set B of blue

points in a Euclidean space of dimension d > 2, each being
present with an independent probability, it is NP-hard to
compute the probability that the L∞ distance between the
closest pair of bichromatic points is less than a given value r,
even when the two sets are linearly separable by a hyperplane
orthogonal to some axis.

IV. STOCHASTIC APPROXIMATE NEAREST NEIGHBOR
QUERIES

Given a stochastic set M of points in a d-dimensional
Euclidean space, and a query point q, what is the expected

(L2) distance of q to the closest present point of M? In this
section we target this problem, and design a data structure for
approximating the expected value of d(S, q) = minp∈S d(p, q)
with respect to a random subset S of M , assuming that d is a
constant. We obtain a linear-space data structure with O(log n)
query time.

A. Approximation via a modified distance function
Assume that the points lie in the universe {0, . . . , 2w−1}d.

Fix an odd integer k = Θ(1/ε). Shift all points in M by
the vector (j2w/k, j2w/k, . . . , j2w/k) for a randomly chosen
j ∈ {0, . . . , k − 1}.

Given points p and q, let D(p, q) be the side length of the
smallest quadtree box containing p and q. Let Bs(p) be the
quadtree box of side length bbscc containing p, where bbscc
denotes the largest power of 2 smaller than s. Let cs(p) denote
the center of Bs(p). Let [X] be 1 if X is true, and 0 otherwise.

Definition 1: (a) Define `(p, q) = d(Bs(p), Bs(q)) + 2
√
ds

with s = ε2D(p, q). Let `(S, q) = minp∈S `(p, q).
(b) r is said to be q-good if the ball centered at cε2r(q) of

radius 2r is contained in B12kr(q).
(c) Define ˜̀(S, q) = [`(S, q) is q-good] · `(S, q).
Lemma 4.1: (a) `(S, q) ≥ d(S, q). Furthermore, if `(S, q)

is q-good, then `(S, q) ≤ (1 +O(ε))d(S, q).
(b) `(S, q) is q-good for all but at most d choices of the

random index j.
(c) ˜̀(S, q) ≤ (1 + O(ε))d(S, q) always, and Ej [˜̀(S, q)] ≥

(1−O(ε))d(S, q).
By (c), Ej [ES [˜̀(S, q)]] approximates ES [d(S, q)] to within

factor 1 ± O(ε). It suffices to give an exact algorithm for
computing ES [˜̀(S, q)] for a query point q for a fixed j; we
can then return the average, over all k choices of j.

B. The data structure: a BBD tree
We use a version of Arya et al.’s balanced box decomposi-

tion (BBD) tree. We form a binary tree T of height O(log n),
where each node stores a cell, the root’s cell is the entire
universe, a node’s cell is equal to the disjoint union of the
two children’s cells, and each leaf’s cell contains Θ(1) points
of M . Every cell B is a difference of a quadtree box (the outer
box) and a union of O(1) quadtree boxes (the holes). Such a
tree can be constructed by forming the compressed quadtree
and repeatedly taking centroids, as described by Arya et al.
The total space is O(n/εO(1)). The main algorithm is excluded
frim this abstract.

V. CONCLUSION

We show that even elementary proximity problems become
hard under the stochastic model, and point to a need for
new techniques to achieve approximation bounds. We believe
that our results can serve as building blocks for a theory of
geometric computation under a stochastic model of input.

REFERENCES

[1] M. De Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computa-
tional geometry: algorithms and applications. Springer, 2008.

[2] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

48

http://gswc.cs.ucsb.edu

49

